
Modeling Telecommunication Systems:
From Standards to System Architectures

Von der Fakulẗat für Mathematik, Informatik und Naturwissenschaften der
Rheinisch-Westf̈alischen Technischen Hochschule Aachen zur Erlangung des
akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte

Dissertation

vorgelegt von

Dipl.-Ing., Dipl.-Wirt. Ing.
Dominikus Herzberg

aus Bonn

Berichter: Univ.-Prof. Dr.-Ing. Manfred Nagl
Univ.-Prof. Dr. rer. nat. Manfred Broy, TU M̈unchen

Tag der m̈undlichen Pr̈ufung: 17. September 2003

Diese Dissertation ist auf den Internetseiten der
Hochschulbibliothek online verfügbar.

Abstract

The architecture of a technical system reflects significant design decisions about
the system’s organization and typically documents a description of key system
elements (be they hardware or software), their composition, functioning, and in-
terrelation. The process of creating a description of an architecture is calledar-
chitecture modeling. In the telecommunication domain, the architecture level has
always played an important role in the design and evolution of communication
systems and networks.

However, the way how telecommunication engineers describe their architec-
tures is surprisingly rudimentary: They use natural languages and conceptual draw-
ings, as a look into “old” as well as recent standards unveils. Even in the transition
phase from standards to the early design phases of systems development, system
designers do not go much beyond thatlevelof informality. Therefore, as practice
shows, in telecommunications, architecture modeling but not the understanding of
architecture as such lacks (i) a suitable, consistent and formal modeling language,
which is adapted to the needs of systems designers, and (ii) a methodology to
support the modeling process. This work addresses these deficiencies.

In this thesis, a systematic approach is presented for modeling architectures of
virtually any telecommunication system. This includes amethodology, amodeling
language, and a prototypeimplementationof the language. A major contribution
of this work is the statement that such an approach can be based upon as few
as three basic cornerstones for a networked system: the types of communication
and the design principles of distribution and layering. The investigation distills
fundamental insights for the design and construction of modern communication
systems.

The outcome can be summarized as follows: The aspect of control leads to the
distinction of three elementarytypesof communication(control-oriented, data-
oriented, and protocol-oriented communication) and provides the rational for grey-
box architecture descriptions. The aspect of distribution can be manifested by the
notion of acomplex connector, which is the key concept to model connection-
oriented, connectionless and even space-based communication networks includ-
ing quality of service. Layering in telecommunication systems is different from

ii

the ordinary understanding of the term. Layers in a distributed communication
system follow a generic form of refinement, namelycommunication refinement.
Communication refinement constitutes a true abstraction hierarchy, which can be
interpreted from two perspectives: from a node-centric and from a network-centric
viewpoint. The viewpoint chosen has an important impact on the systems under-
standing.

The foundation of this work is mathematical, its application is practical. The
mathematics help giving precise definitions on the notions of distribution and lay-
ering; the resulting implications shape the methodology and the language. The
language developed is based on ROOM (Real-Time Object-Oriented Modeling),
an object-oriented but also component-based language. Key language features of
ROOM will be integrated in the forthcoming 2.0 release of the Unified Modeling
Language, UML. Theextensionsproposed toROOMled to a careful redesign of
the language and a prototype implementation. The accompanying methodology
is organized inmethod blocks, each block being a self-contained methodological
unit encompassing heuristics and architectural solution patterns.

The thesis statement is supported by a real-lifecase studyon the SIGTRAN
(SIGnaling TRANsport) architecture. In the case study, first the understanding of
architecture models as imposed by standards is presented. At the end of this work,
it is shown that systematic architecture modeling is relatively easy and comes
at little cost – the gains in terms of clarity, preciseness and expressiveness are
remarkable.

Zusammenfassung

Die Architektur eines technischen Systems spiegelt bedeutsame Entwurfsentschei-
dungenüber den Systemaufbau wider. Sie dokumentiert eine Beschreibung der
Schl̈usselelemente des Systems (Hardware und/oder Software), ihre Kompositi-
on, Funktionsweise und wechselseitigen Bezüge. Der Vorgang der Erstellung ei-
ner Architekturbeschreibung wird auchArchitekturmodellierunggenannt. In der
Telekommunikation hat die Architekturebene stets eine wichtige Rolle im Ent-
wurf und in der Weiterentwicklung von Kommunikationssystemen und -netzen
gespielt.

Jedoch ist die Art und Weise, wie Telekommunikationsingenieure ihre Archi-
tekturen beschreiben, erstaunlich rudimentär: Sie nutzen natürliche Sprache und
Konzeptdiagramme, wie ein Blick in̈altere als auch jüngere Standards offenbart.
Selbst imÜbergang von den Standards hin zu den frühen Entwurfsphasen in der
Systementwicklung gehen die Systementwickler kaumüber dieseninformellen
Grad der Darstellung hinaus. Wie sich in der Praxis zeigt, mangelt es bei der
Architekturmodellierung – nicht jedoch bei dem Verständnis von Architektur an
sich – (i) an einer geeigneten, konsistenten und formalen Modellierungssprache,
die an die Bed̈urfnisse der Systementwickler angepasst ist und (ii) an einer Me-
thodik, die den Modellierungsprozess unterstützt. Mit diesen M̈angeln befasst sich
die vorliegende Arbeit.

In dieser Doktorarbeit wird ein systematischer Ansatz zur Architekturmodel-
lierung von praktisch beliebigen Telekommunikationssystemen vorgestellt. Dies
beinhaltet eineMethodik, eineModellierungsspracheund eine prototypischeIm-
plementierungdieser Sprache. Ein wesentlicher Beitrag dieser Arbeit ist die Be-
hauptung, dass ein solcher Ansatz auf nur drei grundlegenden Eckpfeilern basiert:
den Arten von Kommunikation und den Entwurfsprinzipien von Verteilung und
Schichtung. Die Untersuchung liefert grundlegende Einsichten zum Design und
Aufbau moderner Kommunikationssysteme.

Das Ergebnis kann wie folgt zusammengefasst werden: Der Aspekt der Kon-
trolle führt zur Unterscheidung von drei elementarenKommunikationsarten(kon-
troll-, daten- und protokoll-orientiert) und begründet ,,grey-box” Architekturbe-
schreibungen. Der Gesichtspunkt der Verteilung manifestiert sich im Begriff des

iv

komplexen Konnektors, der sich als Schlüsselkonzept zur Modellierung von ver-
bindungslosen, verbindungsorientierten und sogar von ,,space-based” Kommuni-
kationsnetzen inklusive ihrer Dienstqualitäten herausprägt. Der Begriff der Schich-
tung hat in Telekommunikationssystemen eine andere Bedeutung als sie sonst
üblich ist. In einem verteilten System folgen die Schichten einer generischen Form
der Verfeinerung, derKommunikationsverfeinerung. Die Kommunikationsverfei-
nerung begr̈undet eine echte Abstraktionshierarchie, die aus zwei Perspektiven
interpretiert werden kann: aus einer knoten- und aus einer netzwerk-zentrischen
Sicht. Die geẅahlte Sichtweise hat einen entscheidenden Einfluss auf das System-
versẗandnis.

Diese Arbeit ist einerseits mathematisch fundiert, andererseits ist sie anwen-
dungsorientiert. Mit Hilfe der Mathematik werden präzise Definitionen des Ver-
sẗandnisses von Verteilung und Schichtung gegeben; die sich ergebenden Implika-
tionen pr̈agen Methodik und Sprache. Die entwickelte Sprache basiert auf ROOM
(Real-Time Object-Oriented Modeling), einer objekt-orientierten aber auch kom-
ponenten-orientierten Sprache. Wichtige Eigenschaften von ROOM werden in
der bevorstehenden Version 2.0 der Unified Modeling Language, UML, integriert
sein. Die vorgeschlagenenROOM-Erweiterungenführen zu einer Neugestaltung
der Sprache und einer Prototyp-Implementierung. Die begleitende Methodik ist
in Methodenbl̈ockenorganisiert, wobei jeder Block eine abgeschlossene Einheit
bildet und Heuristiken und Architektur-Lösungsmuster enthält.

Die Aussagen dieser Arbeit werden durch eine Fallstudie aus der Praxis ge-
stützt. In der Fallstudie zur SIGTRAN (SIGnaling TRANsport) Architektur wird
zun̈achst dargestellt, welches Verständnisüber Architekturmodelle den Standards
zugrunde liegt. Es zeigt sich gegen Ende dieser Arbeit, dass ein systematischer
Ansatz zur Architekturmodellierung relativ einfach und mit nur wenig Kosten
verbunden ist – die Zugewinne im Sinne von Klarheit, Genauigkeit und Aus-
druckssẗarke sind jedoch bemerkenswert.

Contents

1 Introduction 1
1.1 Problem Description .2
1.2 Thesis Statement and Approach5

1.2.1 Thesis Statement .5
1.2.2 Approach . 7
1.2.3 A Note to the Reader .8

1.3 Scientific Contribution . 9
1.4 Case Study: SIGTRAN .11

1.4.1 Background .11
1.4.2 The SIGTRAN Architecture11
1.4.3 Problems and Curiosities16

1.5 Overview .22

2 Foundations 29
2.1 Reference Models: OSI and TCP/IP30

2.1.1 Historical Background30
2.1.2 The Architecture of OSI RM31
2.1.3 The Architecture of TCP/IP RM36
2.1.4 Conclusions .40

2.2 From (Embedded) Real-Time Systems to Communication Networks43
2.2.1 (Embedded) Real-Time Systems43
2.2.2 An Extended Model of Real-Time Systems45
2.2.3 Collaborating Distributed Real-Time Systems49
2.2.4 Collaborating Networks51
2.2.5 Summary .51

2.3 A Brief Primer on ROOM .53
2.3.1 Structural Elements .53
2.3.2 Behavioral Elements .59
2.3.3 Model Execution .60
2.3.4 ROOM Tools .61

2.4 Mathematical Formalism .64

vi CONTENTS

2.4.1 The Concepts of Streams, Channels, and Components . .64
2.4.2 Composition with Mutual Feedback and Behavioral Re-

finement .67
2.5 Summary .69

3 Types of Communication 71
3.1 Problems with the Client-Server and the Peer-to-Peer Communi-

cation Model .72
3.2 Alignments of Control .74

3.2.1 What is Control? .74
3.2.2 Who controls whom? .76
3.2.3 One-Sided Control-Oriented Communication78
3.2.4 Two-Sided Control-Oriented Communication84
3.2.5 Zero-Sided Control-Oriented Communication87
3.2.6 Annotating Communication Types in ROOM87

3.3 Communication Services in Telecommunication Systems90
3.3.1 Connection-Oriented Communication exemplified on TCP91
3.3.2 Connectionless Communication exemplified on UDP . . .101

3.4 Resource Control in Telecommunication Systems105
3.4.1 Resource Control exemplified on MGCP106

3.5 Summary .110

4 Distribution 115
4.1 What is Distribution? .116

4.1.1 Definitions in Literature116
4.1.2 An Algebraic Model of Distribution117
4.1.3 The Complex Connector119

4.2 Introducing the Complex Connector in ROOM121
4.2.1 Discussion of Solutions121
4.2.2 The Extension: Typed Bindings121
4.2.3 The Algebraic Definition Visualized127

4.3 Networked Communication .128
4.3.1 Specialty of the Approach128
4.3.2 Connection-oriented Communication Networks130
4.3.3 Connectionless Communication Networks135
4.3.4 Space-Based Communication Networks143

4.4 Addressing .145
4.4.1 Introducing Addressing Concepts in ROOM145
4.4.2 Modeling Address Hierarchies150

4.5 Summary .155

CONTENTS vii

5 Layering 159
5.1 What is Layering? .160

5.1.1 Definitions in Literature160
5.1.2 An Algebraic Model of Layering161
5.1.3 The Abstraction Hierarchy and Implications on Architec-

ture Design .165
5.2 Layering in ROOM .170

5.2.1 Criticism on ROOM’s Interlayer Model170
5.2.2 Improvements to ROOM’s Interlayer Model173
5.2.3 Layering versus Layering178
5.2.4 Node-Centric and Network-Centric Designs in ROOM . .180

5.3 Layered Communication Networks184
5.3.1 Layered Networks exemplified on TCP184
5.3.2 Layered Networks exemplified on UDP185
5.3.3 Layered Networks exemplified on MGCP186

5.4 Planes in Communication Networks190
5.4.1 The Plane Concept in Telecommunications190
5.4.2 Introducing Planes in ROOM191
5.4.3 Architecture Modeling with Planes193

5.5 Summary .196

6 Language and Implementation 199
6.1 The Design of the ROOM Language200

6.1.1 The Four Layer Meta-data Architecture200
6.1.2 From a (Semi)Formal Specification towards a Meta-Model201
6.1.3 ROOM Meta-Model .204

6.2 The Design of ROOM++ .206
6.2.1 Summary of Enhancements to ROOM206
6.2.2 ROOM++ Meta-Model213

6.3 The Implementation: PyROOM++219
6.3.1 Features and Accepted Shortcomings220
6.3.2 Implementation of Four Layer Meta-data Architecture . .222
6.3.3 Description of Basic Functioning223

6.4 Improvement to High-Level Behavior Specification226
6.4.1 Problem Description .226
6.4.2 The Concept of Coupled State Machines228
6.4.3 Extending the UML .230
6.4.4 Conclusion .232

6.5 Summary .234

viii CONTENTS

7 Methodology 237
7.1 Systematic Approach: From Standards to System Architectures . .238

7.1.1 Method Block: System Network Architecture239
7.1.2 Method Block: Protocol Entity245
7.1.3 Method Block: Resource Entity248
7.1.4 Method Block: Aspect Entity250

7.2 The Case Study Revisited .252
7.2.1 Overview .253
7.2.2 Step 1: MTP3-User Communication Network254
7.2.3 Step 2: MTP3/M3UA Communication Network256
7.2.4 Step 3: MTP3 Communication Service257
7.2.5 Step 4: M3UA Communication Service258
7.2.6 Step 5: Mediator .260
7.2.7 Step 6: Design View .261
7.2.8 Step 7: Media Gateway262
7.2.9 Evaluation .263

7.3 Experiences .265
7.4 Summary .267

8 Related Work 269
8.1 Historical Context .270
8.2 Position of ROOM to Related Languages273
8.3 Modeling Telecommunication Systems277
8.4 Frameworks .279
8.5 Architecture .280

9 Summary and Outlook 283
9.1 Summary .284

9.1.1 Cornerstones .284
9.1.2 Results .285

9.2 Outlook .287

List of Figures

1.1 The ISDN Reference Model .12
1.2 SIGTRAN Functional Model .13
1.3 SIGTRAN Signaling Transport Components and Protocol Archi-

tecture .15
1.4 SIGTRAN with M3UA: ISUP Message Transport16

2.1 OSI seven layer reference model, see [ITU94, p.31]31
2.2 Layers, SAPs and CEPs according to OSI32
2.3 Finite state machine of the SAP36
2.4 The TCP/IP reference model, taken from [Tan96, p.36].37
2.5 A simple server using TCP services written in Python39
2.6 A simple client using TCP services written in Python40
2.7 The basic elements of a real-time system44
2.8 An extended model for real-time systems46
2.9 Collaborating distributed real-time systems50
2.10 Collaborating networks .51
2.11 Actor class with ports .54
2.12 Actor class containing all types of actor references56
2.13 Layer connection, see also [SGW94, p.202]58
2.14 Export connection, see also [SGW94, p.205]58
2.15 Relation of the application, the ROOM VM and the target envi-

ronment, see also [SGW94, p.325]61
2.16 SpecificationS with the syntactic interface(I � O) 66

3.1 A simple controller/controllee scenario74
3.2 State model of the train resource75
3.3 Sequence diagrams of the message exchange between controller

and controllee .77
3.4 One-sided control-oriented communication79
3.5 State model of the controller .80
3.6 Domain model of the controller, component-oriented80

x LIST OF FIGURES

3.7 Structural pattern for actor that exerts control82
3.8 Grey-box specification of an actor82
3.9 Domain model of the controller, object-oriented83
3.10 Two-sided control-oriented communication85
3.11 Communication types: (a) control-oriented, (b) protocol-oriented,

(c) data-oriented .88
3.12 Example of control-oriented communication via a relay actor . . .89
3.13 Connection-oriented and connectionless communication services

exemplified on TCP and UDP90
3.14 Actor model of a TCP service user, object-oriented94
3.15 Model of the relation TCP service user/service provider96
3.16 Format of a TCP segment, see [Pos81b]97
3.17 The TCP FSM figure is derived from [Tan96, p.532]. The heavy

solid line is the normal path for a client. The heavy dashed line
is the normal path for a server. The light lines are unusual events.
User commands are given in bold font.98

3.18 Model of a connection-oriented communication service100
3.19 Format of a UDP datagram, see [Pos80]103
3.20 Model of a connectionless communication service103
3.21 Model of the Media Gateway Controller107
3.22 Model of a resource control relation108
3.23 Summary of communication types: (a) control-oriented, (b) protocol-

oriented, and (c) data-oriented110
3.24 Vertical communication types for (a) connection-oriented, (b) con-

nectionless, and (c) resource services111
3.25 Horizontal communication types for (a) a protocol-oriented and

(b) a data-oriented protocol .112

4.1 Modeling Quality of Service (QoS) attributes120
4.2 Options to introduce complex connectors in ROOM: (a) actor class,

(b) enhanced binding concept .122
4.3 Notation for typed binding: (a) bidirectional, (b) unidirectional;

binding name is optional .123
4.4 Example: En-/decoding complex connectors124
4.5 Extended notation for typed bindings: (a) fixed, (b) optional, (c) im-

ported .125
4.6 Example of an invalid specification with typed bindings126
4.7 Equation 4.1 and 4.2 visualized: (a) functional breakup, (b) distri-

bution .127
4.8 Modeling Distribution: Communication network of entities com-

municating via a communication service129

LIST OF FIGURES xi

4.9 TCP and UDP from the viewpoint of networked communication
of independent layers (compare to figure 3.13)130

4.10 Model of the TCP user layer as an independent, abstract network .132
4.11 TCP user network, run-time scenario133
4.12 Address structure characterizing connection-oriented communi-

cation .136
4.13 Address structure characterizing connectionless communication .137
4.14 Model of the UDP user layer as an independent, abstract network .138
4.15 UDP user network, run-time scenario141
4.16 Model of the (a) TCP and (b) UDP provider layer as an indepen-

dent, abstract network .142
4.17 JavaSpaces user network model144
4.18 The notation for addresses and address associations exemplified .147
4.19 Elaborated model for TCP user network151
4.20 Possible refinement forTCPUDeMux152
4.21 Elaborated model for UDP user network153
4.22 Combined model for the TCP/UDP provider network154
4.23 Notation for typed binding .155
4.24 Generalization of communication services: (a) connection-oriented

(CON), (b) connectionless (CNL)156
4.25 Example for modeling addresses, address spaces and address as-

sociation .157

5.1 A schematic model of layering according to OSI RM and TCP/IP
RM .162

5.2 Mathematical model of layered distributed communication163
5.3 Layered model: the abstraction hierarchy166
5.4 Node-centric design approach168
5.5 Network-centric design approach169
5.6 Layers in ROOM, see [SGW94, p.201]170
5.7 Coordinator capsule bridging layers, see [SGW94, p.208]172
5.8 Notation for SPPs, SUPs and layer contracts174
5.9 Explicit export notation for SPPs and SUPs175
5.10 Communication types between layers: (a) control-oriented, (b) protocol-

oriented, (c) data-oriented .176
5.11 Patterns of vertical communication in a communication system:

(a) connection-oriented, (b) connectionless, and (c) resource con-
trol services .177

5.12 The semantics of layering exemplified178
5.13 Node-centric communication refinement in ROOM++181
5.14 Network-centric communication refinement in ROOM++182

xii LIST OF FIGURES

5.15 The TCP user network and the TCP provider network set into re-
lation .184

5.16 The UDP user network and the UDP provider network set into
relation .186

5.17 Model of a distributed resource control relation187
5.18 Refinement of complex connector between MGC and MG188
5.19 The MGC node .189
5.20 Informal model of the ISDN/GSM system architecture; taken from

[EV98, p.117] .190
5.21 Planes exemplified .192
5.22 Precise architectural model based on ISDN, fulfilling figure 5.20 .194
5.23 Precise architectural model based on the MCS framework, fulfill-

ing figure 5.20 .195
5.24 Communication refinement summarized: (a) node-centric, (b) network-

centric .196

6.1 The four layer meta-data architecture201
6.2 Meta-model of ROOM .205
6.3 Notation for unspecified, control and data ports, SPPs, and SUPs .208
6.4 Notational proposal for a simple CDM208
6.5 Notation for address spaces .209
6.6 Notation for planes .210
6.7 Conjugation symmetry in ROOM++210
6.8 Notation for typed binding: (a) binary, (b) n-ary211
6.9 Notation for a) demultiplexer and b) communication service . . .212
6.10 Meta-model of (Py)ROOM++218
6.11 Implementation of four layer meta-data architecture via M2-M0

cascades .223
6.12 Overview of functioning of PyROOM++224
6.13 Screenshot of a PyROOM++ session225
6.14 The TCP FSM figure is derived from [Tan96, p.532]. The heavy

solid line is the normal path for a client. The heavy dashed line
is the normal path for a server. The light lines are unusual events.
User commands are given in bold font.227

6.15 The FSMs of (a) the vertical and (b) the horizontal interface be-
havior of the TCP layer. The shortcuts stand for connect and dis-
connect; the postfixes stand for request, confirmation, indication,
and response .228

6.16 The FSMs of (a) the vertical and (b) the horizontal interface be-
havior of the TCP layer coupled via TDPs and TIPs230

6.17 The design of the coupled FSM prototype232

LIST OF FIGURES xiii

6.18 Sreenshot of the coupled FSM prototype233

7.1 Conceptual schema for system architecture239
7.2 Grouping of communication entities and the communication ser-

vice: a) network-centric, b) node-centric243
7.3 Abstract model patterns for a (a) connection-oriented (CON), (b) con-

nectionless (CNL) communication service244
7.4 Pattern for communication refinement: a) network-centric, b) node-

centric .245
7.5 Conceptual schema for protocol entity246
7.6 Patterns for a model of the protocol entity; a)-d) represent varia-

tions of service and communication interface247
7.7 Conceptual schema for resource entity248
7.8 Simple patterns for a) resource user and b) resource provider . . .249
7.9 Conceptual schema for an aspect250
7.10 Two aspect entity patterns: a) demultiplexer b) connection man-

agement .251
7.11 Overview of SIGTRAN modeling process253
7.12 Model of the MTP3 user communication network255
7.13 Model of the MTP3 provider communication network256
7.14 Model of the MTP3 communication service258
7.15 Model of the M3UA communication service259
7.16 Model of the mediator .260
7.17 Views on the SIGTRAN model261
7.18 Modeling the MGC/MG relation262

xiv LIST OF FIGURES

List of Tables

2.1 Mapping of OSI terminology to TCP/IP terminology37
2.2 Service primitives of TCP as specified in [Pos81b]; “m” indicates

mandatory, “o” optional parameters38

3.1 Mapping of TCP service primitives to service messages92
3.2 Service messages of TCP separated according to communication

types .93
3.3 Service primitives of UDP .101
3.4 Mapping of UDP service primitives to service messages102

4.1 Mapping addressing conceptions to ROOM run-time conceptions .146
4.2 Binding addresses to ports: service primitives and service messages149

7.1 Standards covering case study252

xvi LIST OF TABLES

List of Abbreviations

ABP Alternating Bit Protocol
ACK ACKnowledgment
ACME (name of an ADL)
ADL Architecture Description Language
ADML Architecture Description Markup Language
API Application Programming Interface
ASN.1 Abstract Syntax Notation One
ASP Abstract Service Primitive
ATM Asynchronous Transfer Mode
AXE (product name)
BSD Berkley Standard Distribution
BSSAP Base Station System Application Part
CASE Computer Aided Software Engineering
CC Complex Connector
CCITT Commit́e Consultatif International de Télégraphique et T́eléphonique
CDM Controlled Domain Model
CEP Connection End Point
CEPI Connection End Point Identifier
CHILL CCITT High Level Language
CLOS Common Lisp Object-oriented System
CNL connectionless
CON connection-oriented
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
DIN Deutsche Industrie Norm
DM Domain Model
DMS (Product Name)
DNS Domain Name System
DPC Destination Point Code
DSP Digital Signal Processing
E-CARES Ericsson Communication ARchitecture for Embedded Systems

xviii LIST OF ABBREVIATIONS

EBNF Extended Backus Naur Form
EED Ericsson Eurolab Deutschland GmbH
FDDT Formal Description and Development Technique
FDT Formal Description Technique
FOCUS (name of a method)
FSM Finite State Machine
FSP Finite State Processes
FTP File Transfer Protocol
GCP Gateway Control Protocol
GSM Global System for Mobile communication
GUI Graphical User Interface
HTTP HyperText Transfer Protocol
HW Hardware
IANA Internet Assigned Number Authority
IBM International Business Machines
ID IDentifier
IETF Internet Engineering Task Force
IP Internet Protocol
ISDN Integrated Services Digital Netword
ISO International Organization for Standardization
ISUP ISDN User Part
ITU International Telecommunication Union
ITU-T Telecommunication standardization sector of ITU
M3UA MTP3 User Adaptation
MAP Mobile Application Part
MCS Modular Communication System
MDA Model Driven Architecture
MG Media Gateway
MGC Media Gateway Controller
MGCP Media Gateway Control Protocol
MGW Media Gateway
MIB Management Information Base
MML Man-Machine Language
MOF Meta Object Facility
MSC Message Sequence Chart
MTP Message Transfer Part
NIF Nodal Interworking Function
OCL Object Contraint Language
ODP Open Distributed Processing
OMA Object Management Architecture
OMG Object Management Group

LIST OF ABBREVIATIONS xix

OMT Object Modeling Technique
OO Object-Oriented, Object-Orientation
OOD Object-Oriented Design
OOSE Object-Oriented Software Engineering
OPC Originating Point Code
OS Operating System
OSI Open Systems Interconnection
OSI-RM OSI Reference Model
PC Point Code, Personal Computer
PDM Process Domain Model
PDU Protocol Data Unit
PE Processing Element
PI Protocol Identifier
PLEX Programming Language for EXchanges
PROTEL PRocedure Oriented Type Enforcing Language
PTM Packet Transfer Mode
RCVD received
RFC Request For Comments
RM Reference Model
ROOM Real-Time Object-Oriented Modeling
RT Real-Time
RTP Real-Time Transport Protocol
RWTH Rheinisch-Westf̈alische Technische Hochschule
SAP Service Access Point
SAPI Service Access Point Identifier
SC Simple Connector
SCF Synchronization and Coordination Function
SCN Switched Circuit Network
SCTP Stream Control Transmission Protocol
SDL Specification and Description Language
SDM Structural Domain Model
SDU Service Data Unit
SEI Software Engineering Institute
SEP Signaling End Point
SG Signaling Gateway
SI Service Indicator
SIG SIGnaling
SIGTRAN SIGnaling TRANsport
SIP Service Interaction Point
SMH Signaling Message Handling
SMTP Simple Mail Transfer Protocol

xx LIST OF ABBREVIATIONS

SNM Signaling Network Mangement
SPC Signaling Point Code
SPP Service Provisioning Point
SPPI Service Provisioning Point Identifier
SS7 Signaling System Number 7
STM Synchronous Transfer Mode
STP Signaling Transfer Point
SUP Service Using Point
TCAP Transaction Capabilities Application Part
TCP Transmission Control Protocol
TDP Trigger Detection Point
THE (name of an operating system)
TINA Telecommunications Information Networking Architecture
TIP Trigger Initiation Point
UDP User Datagram Protocol
UML Unified Modeling Language
UML-RT UML Real-Time
UMTS Universal Mobile Telecommunication System
UNIX (name of an operating system)
UP User Part
VM Virtual Machine
WWW World Wide Web
XML eXtended Markup Language

Acknowledgments

This dissertation was part of a research project called E-CARES that had been
generously sponsored by Ericsson Eurolab Deutschland (EED) GmbH. During
my employment at Ericsson, management showed a lot of confidence and trust in
me – I hope the results justify the investment. I would very much like to thank
my managers at Ericsson (in chronological oder) for their support and belief in
me: Ari Peltonen, Andreas Thülig, Per Ljungberg, and Axel Jeske. Thanks also to
Kristian Toivo, president of EED, who supported my research.

E-CARES was a cooperation project between EED and the Department of
Computer Science III, RWTH Aachen. I am very thankful to my supervisor Prof.
Dr. Manfred Nagl for accepting me as an external dissertation student and for the
arrangement, which allowed me to finish my doctoral thesis at his department.

At Ericsson, an expert group accompanied the E-CARES project over all the
years: J̈org Bruß, Dietmar Wenniger and Andreas Witzel. I owe “my” experts a lot.
Their advise was excellent and helpful, and their perseverance was extraordinary.
Special thanks to J̈org, with whom I shared an office for quite some time. We had
many vivid discussions on modeling and SIGTRAN in specific; it was a lot of fun.

I am also grateful to my former colleagues: Elmar Pritsch, who helped me
getting over the first difficulties; Stephan Kruska for all the discussion we had
during our billiard sessions and for his contributions to PyROOM++; Thomas
Muth, from whom I learned most about what telecommunications really is about
– his approach on telecommunications was influential on me. At Ericsson I had
the great luck to work together with Stefan Sandh from dpart.com, who was an
excellent mentor and became a friend of mine. In the Ericsson context, I met Bran
Selic several times; his thoughts on my work were important for me and motivated
me to continue my way.

At Prof. Nagl’s department, I also received a lot of support. Many thanks to
Bernhard Westfechtel, Manfred M̈unch, Peter Klein and André Marburger. More-
over, I had the pleasure to work together with Prof. Dr. Manfred Broy, TU Munich,
whose algebra was an enlightening source of insight to me. I would like to thank
him for co-supervising this work.

A lot of thanks go to my friend Lars von Wedel. Our discussions were a con-

xxii ACKNOWLEDGMENTS

tinuous source of inspiration. Thanks a lot for that! Now we can start working on
our unifying theory ;-)

Finally, I would like to express my deepest feelings for my family. Annette,
your are a great wife and supported me wherever you could. Little Adrian, you
won’t remember when you are grown up, but – lucky circumstances – we spent
much time together. It is so nice that you are with us!

Chapter 1

Introduction

This work is one outcome of the E-CARES research project,1 a cooperation project
between Ericsson Eurolab Deutschland GmbH (EED) and the Department of Com-
puter Science III, RWTH Aachen [HMJ00, MH01]. In addition, this work was
embedded in the post graduate program “Software for Communication Systems”
of the RWTH Aachen. The E-CARES project aimed at developing methods, con-
cepts, and tools to support the processes of understanding and restructuring com-
plex telecommunication systems. The project was determined by the combina-
tion of two apparently opposite approaches: a top-down approach from a system’s
perspective and a bottom-up approach from a “pure” software perspective. The
top-down approach deals with the relation between telecommunication standards
and system architectures, whereas the bottom-up approach deals with the rela-
tion between implementation code and the software architecture. In this work, we
describe the result of our investigations on the top-down approach.

Section 1.1 gives a brief introduction into the problem of modeling system
architectures in the telecommunication domain. After that, the thesis statement
and the approach of this work are explained in section 1.2 and a short overview
of the scientific contribution of this work is given in section 1.3. To be concrete,
a case study is presented in section 1.4. Later in this work we will come back to
the case study and show how we have improved the scenario. Section 1.5 briefly
outlines what will come in subsequent chapters.

1The acronym E-CARES stands forEricssonCommunicationARchitecture forEmbedded
Systems.

2 Introduction

1.1 Problem Description

This work focuses on a very specific area of improvement:the introduction of ar-
chitecture models of telecommunication systems and networks in the early phases
of system development. It is the phase in which system engineers design and pro-
duce first sketches of new technology to come and to integrate in the legacy. The
engineers have to have a system view and see the whole communication network.
Their main input are technical standards, the design of the legacy system, and
technical studies triggered on own initiative.

Claim: We claim that architecture modeling of telecommunication systems and
networks is not yet an established, mature discipline!

This is a provoking statement but gets to the heart of it. Of course, there must be
some routine in the development and construction of telecommunication systems.
As a matter of fact, the telecommunication system is the world’s largest distributed
computing system that has ever been built. Most interfaces are standardized, the
system design is highly modular, theplug’n playprinciple is more of a reality than
in many other computing domains. It constantly evolves and the requirements put
on such systems are outstanding: they have to be extremely failsafe (e.g. the GSM
standards demands a maximum downtime of a switching center of 30 minutes
in 30 years!) and as a consequence thereof, they have to be redundant and main-
tainable during runtime. Last but not least, telecom systems are real-time systems;
they always compute against a deadline. Ideally, these deadlines should never ever
be passed even under heavy load conditions. Extraordinary requirements put on
the largest and most complex system of the world – so there should be some craft
of engineering that has been developed for handling such large and complex sys-
tems. So what are we after?

In an established, mature modeling discipline we find (a) a systematic, struc-
tured approach to tackle a technical problem (which is also called amethod),
(b) we have means to describe and uniformly communicate problems, solutions
and ideas (alanguage), and (c) we have some computerized support that helps in
reasoning, simulation, analysis and the like (atool) [Nag96, p.7].

The claim is not that system engineers cannot solve their problems – the claim
is that they do not follow a systematic method, that they do not use any stringent
(semi-)formal language tailored to their problem domain to describe architecture
models, and that they do not create or simulate their models with the help of tools.

Let us have a look at how the work of system engineers in early design phases
looks like: Generally, there is a tendency that a design conception has to be proven
by implementation; this approach has a long lasting tradition that is deeply rooted
in the hacker culture and is a guiding principle for many designers [Ray99]. How-
ever, this is not a workable approach for early design phases in an industrial en-

1.1 Problem Description 3

vironment, in which the system engineers experiment with different conceptions
and understandings of a, say, new gateway infrastructure. Sitting down and pro-
gramming the new infrastructure would be extremely time-consuming and delay
many answers on urgent questions. Besides that, the target environment for com-
plete networks is not as easily available as interconnected Personal Computers
(PCs) are. So, system engineers have developed their own techniques to cope with
complexity and level of detail. It is a very intellectual job with almost no tools.
They abstract away many details and facts and try to cut down the matter of dis-
cussion to the core and solve it. There may be alternative solutions, each of them
having its own pros and cons. The argumentation is then documented in form of
text and illustrations. After that, the document is handed over to a group of other
system engineers. Their task is to inspect the document and see to it whether the
argumentation stands their criticism or if alternative ideas may eliminate proposed
solutions.

What the author observed in his daily work in the Systems Department at Er-
icsson is that this process takes much too long time and, because of that, becomes
quite costly. The reason is that (a) many discussions are required to get a com-
mon agreement of technical understanding and (b) that the documentation of such
an understanding is informal, often imprecise, and risks permanent discussions of
“what was meant by that statement” and “what do you mean by this in the figure”.

Experience also shows that system engineers have not much use of so-called
modeling languages such as the Unified Modeling Language (UML) [BRJ99].
System engineers have to solve problems of distribution, they use abstract con-
cepts like that of a connection, they have to find proper arrangements of protocol
stacks, they have to deal with issues of shared resource and remote resource ac-
cess, and so on and so forth. Since the UML does not offer corresponding concepts
and no one has told the engineershowUML’s language concepts could be of use
anyhow, there is little need for class diagrams, collaboration diagrams and the like.
The same is true for SDL (Specification and Description Language) [EHS97] and
ROOM (Real-Time Object-Oriented Modeling) [SGW94], two prominent lan-
guages in the telecommunication context. It is unclear, how these languages could
be utilized for architecture modeling in early phases.

The author does not believe that his experience and observations are specific
to Ericsson. There are no courses to attend nor are there are any books available
that teach how to improve and make it right. Take for example the well-known
title “Computer Networks” from TANENBAUM , now in its 4th edition [Tan03].
TANENBAUM is a talented writer who understands to explain and teach a complex
and complicated topic in simple terms and narrative voice. The theme, computer
networks, is methodically structured and presented. However, TANENBAUM has
no method to model and present networks and system architectures. He uses the
same style of architecture “models” we are about to criticise.

4 Introduction

The aim of this work is to contribute to the goal to equip systems engineering
with instruments (method, language, tool) of an established and mature modeling
discipline.

1.2 Thesis Statement and Approach 5

1.2 Thesis Statement and Approach

1.2.1 Thesis Statement

Thesis Statement:In this work we present a systematic approach to create logical
models of network architectures of virtually any telecommunication system. The
thesis is that such an approach can be based upon as few as three basic corner-
stones: thetypes of communicationand the design principles ofdistributionand
layering in a network system.

First, what do we mean by “logical models of network architectures”? Here, we
are having a very specific meaning of the word “model” and the activity “model-
ing”. In natural sciences a model represents a detail of the “real” world; something
that is a simplification of something observable. The model represents a hypoth-
esis about measurable facts; it can be thus falsified (see [Pop94] but also [Cha94,
p.63 ff.]). This is not necessarily the case for models created in computer science.
Here, a model is foremost a description of abstract conceptions and their inter-
relations. In the second place, a model might represent an observable cutting of
reality. Ergo, models in computer science cannot always be falsified, they cannot
proven to be wrong or right. Criteria that are used instead to judge about a model
are its ability to solve a problem, its plausibility, its usefulness, its meaningfulness,
but also implied measures such as predicted implementation costs, extensibility,
maintainability etc.

A model can be expressed in various sorts of languages and in various styles.
A language can be informal, semi-formal,2 or formal3; the notation can be textual,
graphical or both; the language can be adapted to the problem domain or not.
For this work, we strive for models expressed in a formal language with precise
syntax and semantics. The presentation style, textual or visual, is a secondary
but not unimportant issue. Throughout this work we prefer a graphical notation
for the obvious reason that visual models are easier to grasp. But one should not
expect too much of visual models; certain details can be much better expressed by
structured text.

By “logical models” we mean models that consist of logical entities that ab-
stract away the fact that this entity may stand for a piece of hardware or software;
it is rather the assigned functionality that qualifies the entity. If an entity is labeled
as a “coax cable”, the entity depicts a physical device – it may be realized by a

2The UML is a semi-formal technique since it contains constructs with unclear semantics. In
specific, the UML lacks precise execution semantics.

3One can further distinguish Formal Description Techniques (FDTs) from Formal Description
and Development Techniques (FDDTs). FDDTs goes beyond FDTs in their support for logical
deduction of implementations from specifications ([BS01, p.9], [AP98, p.39]). SDL and ROOM
belong to the class of FDTs.

6 Introduction

real coax cable or emulated by software, we do not care. What we are after is to
work with abstractions. It is the conception with its properties that counts. In that
respect the models belong to the domain of systems engineering rather than to the
domain of software engineering.

To continue: What is meant by “network architectures” in the thesis state-
ment? Thearchitectureof a technical system reflects significant design decisions
about the system’s organization and is typically documented as a description of
key system elements (be they hardware or software), their composition, function-
ing and interrelation. Possibly, several viewpoints on the architecture are required
to make the description complete. This description is usually sort of high-level
and abstracts away a lot of details. The process of creating a description of an
architecture is also calledarchitecture modeling.

In academia, there is no commonly agreed definition on architecture, so our
definition just given can be questioned, but we find ourselves in agreement with
the main stream. The Software Engineering Institute (SEI) lists numerous defi-
nitions on its web site4 with most definitions taking a similar, largely structural
perspective on architecture.

Pragmatically, we follow the standpoint of CLEMENTS et al. that the architect
defines what the architecture is [CBB+03]. This standpoint is very much reality
in a domain, in which standards rule development. Very often it is the standard
that states what is to be regarded as the system’s architecture and what is not.
Insofar, we are not in need to make up our minds what the “significant design
decisions about the system’s organization” are. Architecture is design, but design
is not architecture – where to draw the borderline is subjective and usually given
by definition or authority. What is more of a concern is which viewtype we take
on architecture in order to model it.

In this work we see architecture from a C&C, component and connector, type
of view. We consciously neglect other viewtypes such as the allocation viewtype
in order to limit the scope of this work. Other important parts of a complete ar-
chitecture model like e.g. a design rational [Nag90] are neglected for the very
same reason. However, it remains to clarify what we mean by the component and
connector concepts. With the decision to take ROOM as a modeling language
the distinction between a module and a component is blurred, which makes a
precise delimitation difficult. By definition, we declare ROOM’s actor classes as
components and ROOM’s bindings as connectors. More on ROOM and these key
concepts of our architecture viewtype can be found in chapter 2.

The addition “networkarchitecture” in the thesis statement highlights that the
architecture level we consider includes components of a network, which are dis-
tributed and often physically separated in space. So, remote communication be-

4See http://www.sei.cmu.edu/architecture/definitions.html (2003-06-14).

1.2 Thesis Statement and Approach 7

comes an important architectural issue. Note that we use the terms “system archi-
tecture” and “network architecture” interchangeably.

So far the explanatory comments on the thesis statement.

1.2.2 Approach

The thesis statement is quite demanding: If we claim to have a systematic ap-
proach to virtually modelany telecommunication system, we owe the reader a
proof of statement. Directly said: that is impossible. Rather we would like to per-
suade the reader by a double-track strategy: (1) Generic track: We analyze the
basic design principles underlying each and every distributed communication sys-
tem and derive a set of generic solution patterns from that. As is mentioned in
the thesis statement, we believe it to be sufficient to analyze the consequences
of distribution, the effects oflayering, and thetype of communicationin com-
munication networks. (2) Concrete track: To substantiate our argumentation the
solution patterns are exemplified on concrete examples. The examples are chosen
in such a way that they lay the basis for a larger case study, a complete architec-
ture. Thereby, we show step by step how a real network model can be composed of
some few patterns. The case study is of modest complexity (but quite a challenge
to model) and contains a lot of problems we have to generically solve for every
network. This way we demonstrate the applicability of our approach on real-life
engineering problems.

For (1), the generic track, we use an algebra to precisely define basic princi-
ples in communication networks, and ROOM as a modeling language to describe
generic solution patterns. The decision to take ROOM is ana priori decision. It
is based on the insight that ROOM (a) has its origins in telecommunications and
(b) qualifies as an Architecture Description Language (ADL). More on ROOM
and our reasoning of choice can be found in chapter 8.

For (2), the concrete track, we introduce a case study in section 1.4. The pur-
pose of this case study is twofold. First, the case study is a short introduction to
SIGTRAN (SIGnaling TRANsport) with material directly taken from the stan-
dards. Insofar, the case study gives an impression of how standards “model” ar-
chitectures. We will thoroughly discuss the problems and curiosities we note in
dealing with standards. Second, the case study serves as our main example of
reference. With the techniques developed in this work we will demonstrate how
one can do a better job. We will present a new model of SIGTRAN that can be
compared with the standard. It is therefore a good example of how to movefrom
standards to system architectures.

When we speak of a “systematic approach” in the thesis statement, we indi-
cate that one focus in this work is on themethodpart. That is what most system
engineers suffer from, the lack of a proper modeling method. However, the dis-

8 Introduction

cussions in the method part also unveil insufficiencies and deficiencies of oura
priori language ROOM. As a consequence thereof, another important part is to
equip our method with a properlanguage. We do this by proposing extensions to
ROOM. Finally, thetool part is a straight implementation of the new, extended
ROOM language in a tool prototype. Given all these three parts – method, lan-
guage, tool – we have all building blocks together to lift architecture modeling of
telecommunication systems and networks to a mature discipline.

1.2.3 A Note to the Reader

For this work it is advantageous if the reader is well acquainted with data commu-
nication, distributed networks and telecommunication. We assume a background
that comprises the knowledge of computer networks as presented e.g. in [Tan03,
Hal96], of distributed networks as introduced e.g. in [TvS02, CDK01] and of
telecommunications as presented in e.g. [Rus00, Stu97, Stu98]. Furthermore, the
reader should be familiar with “architectural thinking”; basic textbooks in that re-
spect are [BCK98, SG96, Nag90, HNS00]. Ideal is also some background in the
following languages: SDL [EHS97] and/or ROOM [SGW94].

1.3 Scientific Contribution 9

1.3 Scientific Contribution

Technically, the field of communication systems is well understood – but the dis-
cipline of modeling such systems is not. We will not contribute anything to the
technical domain: we do not invent new technology, we do not improve routers
or switches, we do not optimize communication protocols. What we contribute to
is the understanding of the overall: not to get lost in the details of all the bits and
pieces that make up a communication system; to see a network as a complete sys-
tem that can be systematically decomposed into its constituting elements; to work
with suitable abstractions of the system on precisely defined views; to support ar-
chitecture thinking and reasoning on a network level. The systematics presented
enable even a newcomer in a network domain to catch up with the experts in the
field in quite short time. For example, the author and a former colleague spent
roughly one year almost full-time on SIGTRAN until they had confidently under-
stood all the technical material. Lots of discussions with other colleagues were
needed including people from standardization to clarify many issues. If the ma-
terial had been presented in a way this dissertation promotes, the process could
have been reduced considerably – which is a relevant aspect in a business context.
It was also experienced that this new clarity in system design releases creativity.
Thus, as a side-effect, new and improved technology can be the outcome.

From a scientific viewpoint, unique for this work is

2 the development of a method to create architecture models out of generic
patterns;

2 the postulate that such a method can be based upon as few as three basic
cornerstones: the design principles ofdistributionandlayeringand thetypes
of communication;

2 the formalized argumentation and the mathematical reasoning especially
about distribution and layering;

2 the systematic approach in structuring the domain of distributed, layered
communication systems, which is novel;

2 the identification of missing/suitable constructs in today’s modeling lan-
guages to depict architecture models for communication systems (exempli-
fied on ROOM);

2 the definition of new concepts to extend ROOM;

2 the implementation of a new sort of modeling tool that enables rapid model
prototyping.

10 Introduction

In short, this work aims to inaugurate architecture modeling of telecommuni-
cation systems and networks as an engineering discipline.

1.4 Case Study: SIGTRAN 11

1.4 Case Study: SIGTRAN

1.4.1 Background

It is a challenging task to find a case study that is not too complicated but also
not too simple to use as an example for architecture modeling. Just by coinci-
dence, the author and some of his former colleagues were assigned to study and
investigate signaling transport on IP-based network technology. It proved to be an
excellent assignment by management, since SIGTRAN contains almost all sorts
of problems one could be faced with in network design, which made us revise the
method and the language presented in this work over and over again. What makes
SIGTRAN so interesting is that it lies on the border of two different technology
domains: the traditional signaling network technology of telecommunications and
the IP-based network technology of the Internet. So, we could also verify if our
conceptions embrace both domains. This is an important aspect since both tech-
nologies grow more and more together.

The SIGTRAN standards are developed under the head of the Internet Engi-
neering Task Force (IETF). The standards are published as so-called RFCs (Re-
quest For Comments) and are publicly available on the Internet.5

1.4.2 The SIGTRAN Architecture

Leading to SIGTRAN

Simply speaking, the architecture of a modern telecommunication network con-
sists of at least three logically separate but collaborating networks, also called
planes: a user plane, a control plane and a management plane. Theuser plane
transports the payload, the actual data, be it speech, music, images, animations,
raw binary digits, whatsoever. Thecontrol planetransports signaling information;
that is why the control plane is also often called the signaling system. Signaling
information is needed to (a) control resources of the user plane (such as converters
and switches) and (b) to coordinate and supervise the use of user data resources
in order to set up a voice connection or a video stream, for example. Themanage-
ment planeis used to configure and manage both, the user plane and the control
plane.

Let us illustrate the interaction of the user and the control plane on a sim-
ple use case: a mobile call. When a user dials a number on a mobile phone and
presses the “lift off” button, first the control plane comes into action. Based on
the dialed number the signaling system queries databases to locate and identify

5seehttp://www.ietf.org

12 Introduction

Figure 1.1: The ISDN Reference Model; taken from [EV98, p.117]

the resources which are in charge of the addressed device; usually, another mo-
bile phone or a fixed-line termination. The resources typically involved in such a
scenario are radio base stations, switching centers, gateways and service centers.
Then, the signaling system tries to pre-allocate devices (which we also neutrally
call “resources”) within the base station, the switching centers etc. to set-up the
user plane. The resources could be a radio channel, time slots (in case of STM,
Synchronous Transfer Mode), packets (in case of PTM, Packet Transfer Mode) or
cells (in case of ATM, Asynchronous Transfer Mode) [Sie97, p.17ff.], speech en-
/decoders, terminations in a switch, echo cancellers and so on. The control plane
reserves and configures a whole chain of resources for the transport of user data. If
all resources are successfully pre-allocated and if the callee accepts the call, then
the payload can flow over the user plane via the allocated resources. During the
call, the control plane continues to supervise the call. If one of the parties of the
call hooks on or if the radio contact is lost, the signaling system tears down the
call and releases all involved resources.

From this use case we can understand, why system engineers put so much
focus on the control plane, which is the logic of the network and in charge of
almost everything, and often neglect the user plane. The management plane is
often not considered in the first place and has its own problem domain; we will
mostly drop management plane related issues.

The distinction in three planes was introduced with the advent of ISDN (Inte-
grated Services Digital Network) [ITU93a] and shaped the architecture of many
subsequent network architectures like GSM (Global System for Mobile com-
munication) [EV98] and UMTS (Universal Mobile Telecommunications System)
[WAS01]. The basic schema is sketched in figure 1.1. Physical resources belong
to the physical layer.

1.4 Case Study: SIGTRAN 13

[SG] [MGC]

[MG]

Signaling gateway Gateway controller

Media gateway

SCN signal

Media stream RTP stream

Figure 1.2: SIGTRAN Functional Model; a simplified version of figure 1 in
[ORG+99]

A more detailed introduction into basic architectural principles of telecommu-
nication systems is given in chapter 2. Here, the rough distinction of a telecommu-
nication architecture in planes should help the reader get into our main example
of reference throughout this work, the SIGTRAN (SIGnaling TRANsport) archi-
tecture.

The SIGTRAN Functional Architecture

The convergence of traditional telecommunication and Internet technology has led
to new solutions in the integration of both technology domains. One of these so-
lutions is the framework architecture for signaling transport, SIGTRAN for short,
in the UMTS system.

The SIGTRAN architecture [ORG+99] builds a link to interconnect a (tradi-
tional) telecommunication network and an IP-based network. Mediation between
different networks and communication infrastructures is generally achieved by
so-called gateways. Generally speaking, a gateway converts and adapts the com-
munication protocols from one technology domain to another technology domain;
this includes also the conversion of address spaces and schemes and the transla-
tion of management messages. Consequently, the functional “model” of the SIG-
TRAN architecture is built up of gateways, see figure 1.2. Note that all elements
in figure 1.2 are functional entities; they may be but need not be implemented as
physical entities.

There is one gateway for the conversion/adaption of control plane information,
the Signaling Gateway (SG), and another gateway for the conversion/adaption of
user plane information, the Media Gateway (MGW). The signaling gateway does

14 Introduction

not directly control the media gateway; instead, there is a special function, the
Media Gateway Controller (MGC), that controls the media gateway.

The signaling gateway processes SCN (Switched Circuit Network) signals
from the telecom side and some sort of IP-based signaling information from the
IP network side. The media gateway processes a media stream from the telecom
side and an RTP (Real-Time Transport Protocol) [SCFJ96] stream from the IP
network side. The signaling traffic between the signaling gateway and the gate-
way controller, and between the gateway controller and the media gateway is also
IP-based.

Be aware that we intentionally only use figures from the SIGTRAN standard
in this section; we just polished the drawings a little bit for this work. Besides
introducing SIGTRAN technology, the purpose of this section is to give an idea
how standards and related documents “model” the domain. That is the reason
why we do not modify the figures even if it might be helpful for understanding
purposes. We will discuss our observations later in section 1.4.3.

The SIGTRAN Protocol Architecture

The SIGTRAN architecture aims to provide means for the “transport of message-
based signaling protocols over IP networks” [ORG+99]. So the official statement,
but what is meant by this quote?

For the control plane a signaling system called Signaling System Number 7,
also abbreviated as SS7, has becomethestandard in telecommunication networks
[ITU93b]. SS7 consists of an infrastructure of Signaling End Points (SEP) and
Signaling Transfer Points (STP) and a set of signaling services. The services can
be divided into a Message Transfer Part (MTP) and several User Parts (UP). MTP
realizes basic means for message transfer in SS7, UPs are used directly by user
applications and provide higher-level services. Common user parts are e.g. ISUP
(ISDN User Part) for ISDN services and TCAP (Transaction Capabilities Applica-
tion Part) for database transactions. For mobile networks there are some specific
extensions like for example MAP (Mobile Application Part) and BSSAP (Base
Station System Application Part).

There are numerous telecom applications that rely on the existence of an SS7
signaling system or – more specifically – on SS7 user parts. Huge investments
have been made to develop and deploy these applications. The key idea of SIG-
TRAN is reuse: reuse as much as possible. To let the user parts also run on an
IP-based network, SIGTRAN provides an MTP-like interface on the IP side so
that all user parts can be just stacked atop that interface without any modifications.
In other words, the user parts run completely independent of the actual message
transport mechanism being used. The user parts do not notice if MTP or SIG is
used as a reliable signaling transport function, see figure 1.3 a) and b).

1.4 Case Study: SIGTRAN 15

ISUP ISUP

SIG

IP

SIG

IP
MTP
L1-3

MTP
L1-3

MTP
L1-3

SEP STP SG MGC
SS7 SS7 IP

SCN adaption module

Common Signaling Transport

standard IP transport

SIG

(a)

(b)

Figure 1.3: SIGTRAN Signaling Transport Components and Protocol Architec-
ture; see figure 6 and 7 in [ORG+99]

SIG is generically decomposed in a standard IP transport component, a com-
mon signalling transport component, and an SCN adaption module component,
see figure 1.3 a). SIG sits on top of IP and provides an interface identical to the
interface provided by a traditional MTP Layer 3, see figure 1.3 b). Although func-
tionally equivalent from a user part point of view, SIG is in contrast to the MTP
protocol stack. The three layers of MTP have the following functions: “Level 1
defines the physical, electrical and functional characteristics of a signalling data
link and the means to access it. [. . .] Level 2 defines the functions and proce-
dures for, and relating to, the transfer of signalling messages over one individ-
ual signalling data link. [. . .] Level 3 in principle defines those transport func-
tions and procedures that are common to, and independent of, the operation of
individual signalling links. [. . .] [T]hese functions fall into two major categories:
(a) Signalling message handling functions6 and (b) Signalling network manage-
ment functions7” [ITU93c]. It is important to note that the SIGTRAN framework
architecture does not further break down the SIG components but rather formu-
lates requirements on SIG to fulfill. The functioning of the SIG components may
thus look completely different from the MTP layer functions.

6“These are functions that, at the actual transfer of a message, direct the message to the proper
signalling link or User Part.” [ITU93c]

7“These are functions that, on the basis of predetermined data and information about the status
of the signalling network, control the current message routing and configuration of signalling
network facilities. In the event of changes in the status, they also control reconfigurations and
other actions to preserve or restore the normal message transfer capability.” [ITU93c]

16 Introduction

(NIF) ISUP

SCTP

IP

SCTP

IP

SEP SG MGC
SS7 IP

M3UA

MTP2

L1

MTP3

MTP2

L1

MTP3 M3UA

ISUP

Figure 1.4: SIGTRAN with M3UA: ISUP Message Transport; taken from
[SMPB02] (example 1) with slight modifications

Since the STP and the SG act only as a transfer point and as a converter,
respectively, the end points host the user parts. In figure 1.3 b), ISUP exemplifies
the user part for the SEP and the MGC. The two user parts can interact with each
other without any notice that one resides on an traditional SS7-based network
whereas the other resides on an IP-based network.

SIG Exemplified on M3UA

A concrete specification of SIG is given by the MTP3 User Adaptation Layer,
M3UA for short, see [SMPB02]. M3UA relies on the Stream Control Transmis-
sion Protocol (SCTP) [SXM+00] as a layer over IP. SCTP is very close in func-
tionality to the well-known Transmission Control Protocol (TCP) [Pos81b] but
with certain improvements and is promoted as a potential replacement for TCP in
the future [SX01].

With M3UA and SCTP as incarnations of the SIG components, the “new” pro-
tocol architecture looks like as shown in figure 1.4. New is the Nodal Interworking
Function (NIF), which is not at all mentioned in the SIGTRAN framework and is
essentially left unspecified in the M3UA standard. We can just deduce that NIF
stands for some functionality that is neither offered by M3UA nor MTP3 but re-
quired for the interwork of both.

1.4.3 Problems and Curiosities

What we have seen in the previous subsection is not only an explanation of SIG-
TRAN but also a typical example for the way how information is presented by
technical standardization bodies: plain english text with some supporting draw-
ings. That’s it! Totally document driven, no “real” models, just “pen and paper”.

1.4 Case Study: SIGTRAN 17

In the SIGTRAN example we referenced some few technical standards from
the Internet Engineering Task Force, IETF, and the International Telecommunica-
tion Union, ITU. The reader may inspect other technical recommendations from
IETF, ITU or any other standardization body; the outcome will be the same: for
each technical recommendation (or set of recommendations) an own conceptual
domain space (more formally called anontology) and style of presenting/modeling
the topic under discussion is invented. While this is perfectly all right, the problem
is that neither a methodological approach in analyzing or constructing network
and system architectures is followed nor is there any consequent notational for-
malism applied for modeling such systems. In the cases in which formal languages
are used such as SDL, the Specification and Description Language [EHS97] (SDL
is a very prominent language in telecommunications), their usefulness is often re-
stricted to behavioral specifications.

But what exactly do we complain about in the SIGTRAN example? Let us re-
inspect the SIGTRAN example and especially focus on the figures 1.2–1.4. What
is odd? What is inconsistent? What remains unclear?

Notes about the SIGTRAN Functional Model

Functional models present logical entities and their relationships among each
other. Most likely, functional models are one of the oldest engineering tools. They
range from sketches on the functioning of a technical device up to very formal,
abstract information models, such as entity relationship diagrams.

The use of functional models is problem-free as long as some syntactical and
semantical conventions are followed and as long as these conventions lead to a
consistent presentation, which is free of discrepancies and unclear meanings (at
least to a certain degree). However, the figures in standards and in many other
technical documentation very often remind of drawings on a drawing board. No
conventions have been agreed upon, symbols rely on common sense, the inter-
pretation is vague, often intuitive. Usually, these sorts of drawings just visually
support a textual explanation. Nonetheless, system designers and architects do not
hesitate to call such figures “architectures” or “models” (as is indicated by the cap-
tions) and are often very proud of the pretended preciseness of the figures and the
level of technical detail. They can be easily proven to be wrong as demonstrated
on figure 1.2.

This said it is not surprising that even a simple figure like the SIGTRAN func-
tional model (figure 1.2) can raise a bunch of questions. Neither the author with
his background in SIGTRAN nor other experts in the domain could clearly answer
or argue about the following questions and observations:

2 It is unclear why we seem to have two levels of components: The arrows do

18 Introduction

not terminate at the outside of a functional component box but at something
inside.

2 Some lines have arrow heads, some do not have arrow heads. Is there a
reason for that?

2 What is the meaning of the lines connecting the functional components at
all? Do they represent connections or just logical relations of data flow?

2 The meaning of the “o” in the middle of some lines can only be guessed:
It seems to indicate “interfaces” which are addressed by SIGTRAN; but is
that interpretation correct?

2 The media gateways, the gateway controller and the general set-up are not
unique inventions of SIGTRAN. It remains unclear why this is called a
“functional model” and what is SIGTRAN specific in this model.

2 The distinction in a user and a control plane is graphically not supported
and cannot be deduced from the figure.

2 The gateways are located at the borderline of two different network tech-
nologies. However, in the figure we see two arrows, the SCN signal and
the media stream, pointing into emptiness. There is no notion of connected
networks. Why not?

Notes about the SIGTRAN Protocol Architecture

So-called protocol architectures are a very common and widespread way to present
a whole network system or parts thereof with all key components at a glance. They
are favorite since they allow an engineer to give a complete overview of the pro-
tocols and the nodes hosting these protocols on a single sheet of paper. Even large
systems like GSM or UMTS easily fit on a DIN A4 or DIN A3 printout.

Drastically speaking, some system architects stop working when they success-
fully completed a protocol architecture. Together with some supplementing notes
about the functions to be fulfilled by the nodes in the network, everything else is
regarded as detail work. While this is surely an oversimplification, it emphasizes
the importance and the relevance of protocol architectures in the daily work of
system engineers.

Anyhow, protocol architectures also lack consistency and clarity and are open
to misunderstandings and misinterpretations. The SIGTRAN protocol architecture
(figure 1.3) is a very good case study for the nuisances in protocol architectures in
general:

1.4 Case Study: SIGTRAN 19

2 The figure seems to relate logical functions and the protocol stacks related
to these functions. Still there is the question whether e.g. the MGC is merely
a logical container for the IP/SIG/ISUP protocol stack or if the MGC func-
tionality goes beyond that?

2 The functional entities are connected by lines with SS7 and IP as labels at-
tached to them. What is the precise meaning of these lines? If they represent
technologies the connection is based upon, the meaning of an IP connection
is somewhat awkward, since IP is connectionless by nature.

2 What happens in the signaling gateway? We just see two protocol stacks
side by side, but how is the interworking done? Why is there no entity that
comprises the interworking function?

2 MTP level 1 and level 2 address the physical and data link layer. However,
the physical and data link layer underneath IP are not shown. Why not? It
makes the figure inconsistent in the level of detail presented.

2 The figure strongly implies that there is a relationship between the levels of
MTP and IP/SIG. Nothing could be more misleading. The MTP stack and
the IP/SIG stack can be hardly compared in functionality. Many authors
have tried to do so in similar cases, but the result is always debatable. The
key point is that the SG integrates technology domains and does not try to
map protocol functionality.

2 As was mentioned, for the user parts the underlying network technology
becomes transparent. Does that key point of SIGTRAN become apparent
from looking at the protocol architecture? To a certain degree, yes, since
the STP and the SG lack a user part; but it requires background knowledge
about SS7 and cannot be solely concluded from the figure.

2 Since SIGTRAN aims at transparency on the message transfer part, every-
thing above the MTP3 interface is pure SS7 technology. In that sense, the
MGC can be regarded as another SEP. That role of the MGC is neither clear
from the figure nor is it clear from the standard [ORG+99].

2 For some reason, an STP is shown in the figure. There is a point to make that
routers in an IP network may be comparable to the status of STPs in SS7.
Again, this is an inconsistency on the presentation level. Is the existence of
STPs and routers of any value for the explanation of the SIGTRAN protocol
architecture?

2 The relation MGC/MGW is not further addressed by SIGTRAN. So, what
do we do about it?

20 Introduction

Notes about SIGTRAN with M3UA

Figure 1.4 is another evidence for the immature discipline of modeling telecom-
munication systems. What is essentially new in the SIGTRAN protocol archi-
tecture as provided by the M3UA standard, is the Nodal Interworking Function
(NIF). NIF is a characteristic function of relays and gateways but often there is
no clear indication given how a protocol and NIF interrelate. Some issues we can
address are:

2 NIF is a new component in the SG and non-existent in the SIGTRAN frame-
work. An issue that requires clarification, which is neither given by SIG-
TRAN nor the M3UA standard.

2 Why is NIF embraced by round brackets? What is the meaning of this nota-
tion? Is it because NIF is not a protocol but an internal function (what it in
fact is)?

2 Since NIF is visually placed on the same level as ISUP is, the “innocent”
reader may interpret NIF as a protocol complementing ISUP. The figure
supports such a misinterpretation.

2 For what reason is MTP1 now noted as L1 (Layer 1)?

2 In the figure there is a line that connects the L1 layer and another line that
connects the IP layer. What is the meaning of these lines? For the L1 layer
the line may stand for a physical connection, but for the IP layer we are not
on the level of physical connections.

2 In which respect do the interconnections of the protocol stacks relate to the
interconnections of the functional components at the top of the figure?

2 It looks very much like that M3UA and MTP3 are on the same functional
protocol level, and so do SCTP and MTP2, IP and L1. This comparison is
full of pitfalls and basically wrong.

Forgotten Issues

There are some issues in system architecture modeling which are important but
rarely made explicit. That does not mean that these issues are not properly under-
stood. Rather, the author assumes that systems engineers do not know how they
should handle these issues in their models.

1.4 Case Study: SIGTRAN 21

Addressing Addressing is one of these issues. For example, in SIGTRAN a
conversion between Signaling Point Codes (SPC) and IP addresses takes place
at the signaling gateway. However, on higher levels we only work with SPCs or
Global Titles etc. depending on the user part. How is that modeled?

Resources Another issue is resource handling. Protocols alone do not do so
much. Somehow and somewhere physical or logical resources must be controlled
and used. Without a firm understanding of user/resource relationships, communi-
cation architectures cannot be modeled properly.

Quality of Service Quality of Service (QoS) is a further issue. QoS attributes
can be rarely found in system models even though their importance is unquestion-
able; they may substantially influence the system architecture design. For exam-
ple, demands on system reliability may lead to redundancies in form of duplicated
entities. The question is where to assign QoS attributes to in system models.

In the course of this work, we will come back to these “forgotten” issues and pay
attention to them.

22 Introduction

1.5 Overview

In the following we give a brief overview of the chapters to come.

Chapter 2: Foundations

The foundations for this work are being laid in the next chapter, chapter 2. We will
start with the most commonly used and referred to framework in telecommunica-
tions, the Open Systems Interconnection Reference Model (OSI RM). In addition,
we will also consider another widely spread framework, the TCP/IP (Transmission
Control Protocol/Internet Protocol) RM; TCP/IP is the other popular RM primar-
ily used in the Internet technology domain. We will diagnose that OSI as well as
TCP/IP favor a dominant view on communication systems, which limit their use
and applicability for modeling such systems. So, the goal of the first step is to
establish an unbiased view and work out core principles of both reference models.
As a result of these efforts, we will present the structuring of a communication
system in a horizontal and vertical dimension as equally important and with equal
rights: neitherdistribution(horizontal structuring) norlayering(vertical structur-
ing) is per se superior or inferior to the other.

A further basic insight originates from dealing with real-time systems: a real-
time system basically is a reactive system, and a reactive system requires some
sort of internal representation, a model of its environment in order interact with the
“outer” world – at least, when the reactive systems aims to exert control, meaning
when it aims to influence the outer world in a meaningful manner. This under-
standing of modeling the outside world leads to the term of a Controlled Domain
Model (CDM). It is the aspect of control in a communication relationship, which
lets us distinguish differenttypes of communication.

Herewith, we are having the three basic cornerstones required for an elemen-
tary understanding of complex communication networks:distribution, layering
andtypes of communication. These cornerstones are the main themes of the next
three chapters.

Before that, we give a brief introduction to the modeling language of our
choice, namely ROOM (Real-Time Object-Oriented Modeling). In ROOM, a sys-
tem is specified in a component and connector (C&C) style. The components,
called actor classes, can be composed of other components, realized through so-
called actor references, which point to the respective actor classes. Components
can be interconnected via bindings. The possibility to label an actor reference as
fixed, optional, substitutable or as a placeholder for an actor class instance be-
ing imported at run-time, makes the language very powerful and expressive for
modeling component-oriented architectures.

1.5 Overview 23

To also provide a formal foundation for this work, a component-oriented alge-
bra, called FOCUS, is being introduced, which enables a precise description of the
core principles of distribution and layering.

Chapter 3: Types of Communication

In chapter 3 we will investigate elementary types of communication relations. The
starting question is: What is control? We will define control as the directed exer-
tion of influence on the behavior of the communication partner. As an immediate
conclusion, we can state that the behavior can be meaningfully directed only if one
knows (a) the current state of the controllee (at least to a certain degree of proba-
bility) and (b) with which measures, called stimuli, one can provoke which sorts
of directly or indirectly observable activities (also with a certain degree of proba-
bility). Ergo, it is required to have a state model – or more generally – to have an
internal representation, simply called model, of the other party. This model is the
so-called Controlled Domain Model (CDM). The CDM just describes that fraction
of the communication reality as it is observed by the controller. The CDM is not
a complete model of the controlle, but the controllers viewpoint on the controllee.

The question “Who controls whom?” can usually not be answered by an ex-
ternal observer, who monitors the exchange of messages between two communi-
cating parties. One needs knowledge about whether one party has a CDM of the
other party to exert control or not. In our architecture models, we regard the as-
pect of control as vital and make the CDM explicitly available. We therefore argue
for grey-box specifications of controlling components. In our models, the CDM
will be made public as a model artifact placed on a component’s border. Further
internals of a component remain hidden from an external viewpoint.

We can distinguish three basic combinations of the exertion of control between
two communicating parties: (a) no side exerts control, i.e. no side has a CDM to in-
fluence the other side’s behavior in a controlled way, which we calldata-oriented
communication; (b) only one side exerts control, which we callcontrol-oriented
communication; (c) both sides exert control, which we callprotocol-orientedcom-
munication. The first two cases, data-oriented and control-oriented communica-
tion, could be related to the traditional distinction in data flow and control flow.
The last case, protocol-oriented communication, is a remarkable exception and
seems to be a unique specialty in communication systems: both parties try to
control each other in order to achieve a common goal. Mutual controlled com-
munication must be a special sort of communication that has to struggle with the
communication as such, i.e. with communication that is subject of disturbances,
interferences and so on. Mutual control is the attempt to compensate these dis-
ruptive elements by a set of rules, binding for both parties, how to normally react
on the receipt of messages and how to react on exceptions on the expected flow

24 Introduction

of information. In telecommunications, such a set of rules is called aprotocol.
This notion of a protocol can be distinguished from the also common convention,
to define the term “protocol” as a set of possible messages to be exchanged. We
prefer to call the latter meaning amessage schemaand use the termprotocolfor a
message schema that is enriched by a set of rules for communication.

To sum up, the aspect of control, the motivation for grey-box specifications,
and the distinction of types of communication are at the heart of chapter 2 and
are exemplified on three case studies: on modeling TCP (Transmission Control
Protocol), UDP (User Datagram Protocol), and MGCP (Media Gateway Control
Protocol).

Chapter 4: Distribution

The notion of distribution refers to the physical and spatial separation between
two communicating parties in space. For communication, the distance in space
has to be bridged by a communication medium. This medium is, depending on
its properties, in most cases non ideal and has a disturbing impact on the commu-
nication. The exchange of messages via the communication media may result in
a loss of messages, may cause defects in messages, may impact the sequence of
messages (e.g. some messages may overtake other messages) etc. All these effects
can be condensed in a model of the communication medium, the so-calledcom-
plex connector. Thereby, the physical aspect of distribution is logically modeled
by an abstraction of a communication media. The notion of a complex connector
is the key issue of chapter 4.

Since remote communication can be either connection-oriented or connection-
less, these are the basic cases to consider. Connection-oriented communication
can be further characterized as static or dynamic. Connection-oriented communi-
cation is static, if there is by default a connection established between two com-
munication parties, which cannot be removed. This sort of communication is – per
definitionem – undestructable and only in rare cases an adequate abstraction for a
“real” communication channel. Normally, connection-oriented communication is
dynamic: a connection to another party is requested, established, and – later on –
released. For that purpose we need a communication service, who maintains and
controls connections. To be methodically strict, the communication service can
be interpreted itself as a complex connector, usually ann-ary complex connec-
tor. For pragmatic reasons, we leave it up to the modeller to alternatively define a
component in form of an actor class as the communication service.

In connectionless communication, messages are delivered to their destination
without setting up a connection; ergo, there is no connection management needed.
Here, the connectionless communication can be also methodically correct mod-
eled as a complex connector offering a distribution service instead of a connection

1.5 Overview 25

service. Optionally, one can also represent the distribution service via a casual
component.

In chapter 4, connection-oriented and connectionless communication are thor-
oughly discussed on the example of TCP and UDP; TCP is connection-oriented,
UDP connectionless. The importance of the notion of a complex connector is re-
flected by the extension of ROOM’s binding concept to the concept of atyped
binding.

The difference between connection-oriented and connectionless can be also
understood as a fundamental difference in the way, messages are being addressed
to their destination. A connection can be seen as an special form of an address: the
connection as an alternative representation of a previously determined destination.
In the connectionless case, the destination address has to be specified for each
and every message; choosing a substitute representation is no option. This sort of
considerations emphasize the meaning of addressing and the need to model and
structure address spaces. The relevance of the topic also leads to suitable language
constructs in ROOM.

Chapter 5: Layering

So far, we are capable to model distributed systems, but one of the most impor-
tant design principles in communication systems, the principle oflayering, is not
covered, yet. Chapter 5 is all about this topic. Having the conception of a complex
connector, layering can be resolved as the replacement of a complex connector by
a distributed system. The complex connectors of a distributed system are them-
selves distributed systems. Consequently, the complex connector is an abstraction
of an “underlying” distributed system. This form of layering can be sharply distin-
guished from the structuring principle, in which a “lower” layer provides services
to an “upper” layer; the “upper” layer may in turn provide services to the next layer
above. While layering with complex connectors truly leads to an abstraction hier-
archy – we call it also communication refinement –, layering as an organization
of service providers and users is only characterized by a separation of life-time
contexts and sort of “uses” relations.

Layering in the sense of communication refinement allows an system architect
to have two viewpoints on a system model: a node-centric and a network-centric
viewpoint. The node-centric viewpoint corresponds to the traditional understand-
ing of layering in a communication network and is manifested by the focus on
protocol stacks in a node. Within such a node, the scope is narrowed to layers
as service providers and users, here protocol-oriented communication services.
This viewpoint is typical for an implementation-oriented perspective, which sees
nothing but the node. This perspective is limited and partially misleading, since
it hides the view on the system as a whole. A network-oriented viewpoint, on the

26 Introduction

other hand, perceives a communication network as an infrastructure of “nested”
distributed communication systems. This is a typical viewpoint of a system archi-
tect. However, this viewpoint has not made it as a consequent design principle in
the canon of (intellectual) tools available for modeling complex communication
systems. Most likely, the reason is that OSI RM and TCP/IP RM are very much
node-centric on their viewpoint on the world of communication systems. OSI and
TCP/IP are so much dominant that the attempt to change viewpoint is almost iden-
tical to a paradigm change. But as a matter of fact, both viewpoints (node-centric
and network-centric) are of equal right and can be transformed to one another.

The different meanings of layering and the different viewpoints of communi-
cation refinement are discussed in detail on the example of ROOM and are made
concrete on TCP, UDP and MGCP. In the course of our investigation, we will real-
ize that horizontal and vertical structuring of communication systems are relative
terms and require a reference point. Furthermore, we will see that the concept of
a complex connector can be used for more than abstracting a “lower” distributed
system. A further insight concerns the use of planes in communication systems.
Planes are spheres of functional use and can be respected by the introduction of
namespaces in ROOM.

With all the described techniques we are having a powerful set of conceptions
at hand, to model distributed, layered communication systems.

Chapter 6: Language and Implementation

All the extensions we made to ROOM throughout the previous chapter are sum-
marized in chapter 6. The extended ROOM language is called ROOM++, its im-
plementation in the programming language Python, PyROOM++. ROOM++ is
stringently designed and implemented as a meta-model in a four layer meta-data
architecture. The focus is on the realization of architecturally relevant structural
conceptions; behavior has to be specified as a Python program, the use of state
machines is not supported but can be easily added via a library. For this case,
we propose an extension to state machine modeling, which enables to decouple
functional aspects of a “large” state maschine into smaller state machines and syn-
chronize their coordination and cooperation via so called trigger detection points
and trigger initiation points.

The implementation of ROOM++ via PyROOM++ serves as a proof-of-concept
for the realization of the proposed language extensions. Furthermore, with the use
of Python as an “action language” – Python is an object-oriented, dynamically
typed language – we can show that rapid model prototyping is not only a vision
but becomes a suitable approach.

1.5 Overview 27

Chapter 7: Methodology

Language extensions to ROOM and their realization in a modeling tool are one
major concern of this work. Another major concern is the systematic approach in
modeling complex communication systems. Chapter 7 wraps up the method we
aimed for in this work and which has been manifested in the previous chapters.
The methodology provides a detailed set of instructions to the hand of a modeler,
which should support the modeler to convert a telecommunication standard, the
results of a prestudy etc. into a model of the system architecture. The instructions
are complemented by heuristics and modeling patterns and examples of how they
can be expressed in ROOM++.

To demonstrate the methodology as a working method, the case study pre-
sented in the previous section of this introduction chapter is revisited. While SIG-
TRAN remains a complex subject of technology, our models uncover the basic
structuring and the use of address spaces in SIGTRAN. Essentially, SIGTRAN
gets much more clearer from our models than from the “models” presented in the
standards.

Chapter 8: Related Work

In chapter 8 we relate our approach to other published work.

Chapter 9: Summary and Outlook

Chapter 9 closes this work with a summary and an outlook.

28 Introduction

Chapter 2

Foundations

Before one starts, one needs to choose a framework, a context for reasoning and
arguing about a topic, i.e. one has to take a viewpoint on the world, a way how to
look at the domain of concern.

In section 2.1 we will take a closer look on two of such frameworks: the OSI
Reference Model and the TCP/IP Reference Model. Both reference models are
the dominant models of the domain: OSI shaped and still shapes the design and
structure of telecommunication systems, TCP/IP laid the basis for the Internet
technology. We will come up with a harmonized view on OSI and TCP/IP. A
complementary view, presented in section 2.2, concerns the general structure of
a real-time system. Any communication system is technically constructed out of
a set of real-time systems. Section 2.3 is a brief tutorial on ROOM, the modeling
language we will use in subsequent chapters to describe models and patterns of
solution. To support a formalized reasoning on basic design principles, we will
introduce a suitable mathematical formalism in section 2.4. Section 2.5 is a sum-
mary of key points we draw up in this chapter.

30 Foundations

2.1 Reference Models: OSI and TCP/IP

As a prerequisite to discuss architecture modeling we need to establish some con-
sensus on the view we have on the subject matter of communication systems. A
domain, such as communication systems, can be thought of as a “world” with its
own conceptual entities or objects [SM92]. AReference Model(RM) (sometimes
also calledreference framework) pre-structures a domain; it proposes a set of con-
ceptions and relations and thereby implies a specific view and understanding of
the domain. The two dominating frameworks for communication systems are the
Open Systems Interconnection (OSI) Reference Model and the TCP/IP Reference
Model.

2.1.1 Historical Background

The Open Systems Interconnection Reference Model (OSI RM) [ITU94] has laid
a solid foundation for understanding distributed open system intercommunica-
tion. It has been developed in the early 1980s, but became soon “knocked down”
by another communication architecture developed, which is sometimes called the
Internet architecture and usually designated by the Transmission Control Proto-
col (TCP) [Pos81b] and the Internet Protocol (IP) [Pos81a] suite. In practice, OSI
was a commercial failure, it has never been fully implemented, only some few
protocols of OSI have.1 The OSI RM turned out to be by far too theoretic and un-
necessarily complex; printed out, the whole OSI standard easily piles up to a paper
staple of one meter. Outstanding expertise and a lot of time is needed just to digest
the material. Seen from that point of view, it seems to be quite natural that the In-
ternet architecture overrun OSI RM. TCP/IP, forming the backbone of the Internet
architecture, is simple to understand, easy to read (it sums up to slightly more than
one hundred pages), public available, and – most important – it was already imple-
mented and bundled with Berkeley Unix in the early 1980s. At that point in time
nobody could foresee the emergence of the Internet; but when it happened, TCP/IP
conquered the world: the Internet revolution began on Unix machines, which al-
ready offered IP and TCP as an ideal environment for interconnecting computers.
The “specify first and implement later” culture of ISO/ITU (the standardization
bodies of OSI)2 did not result in working code until today [PD00].

Although TCP/IP and the Internet architecture are well designed and a hot
issue for everybody interested in internetworking, OSI RM was and still is the

1Note that the abbreviation “OSI” refers to nearly the whole X-series of the ITU-T standard;
sometimes “OSI” is used interchangeably with “OSI RM”. ITU-T stands for the telecommunica-
tion standardization sector of ITU.

2ISO stands forInternational Organization for Standardization, ITU for International
Telecommunication Union.

2.1 Reference Models: OSI and TCP/IP 31

main guiding principle in network design for telecommunication systems. Besides
of its didactic value, OSI RM manifests some basic concepts and principles of
open systems intercommunication, which are still in use and have influenced the
design of todays communication systems, even TCP/IP RM. Compared to OSI, the
TCP/IP RM does not provide such a complete and stringent conceptual reference
framework. That is why the next section starts with discussing OSI RM; OSI RM
precisely defines concepts and terminology. This eases entering the topic under
discussion. Later on, we cover the TCP/IP RM. Some more information and critics
about OSI RM and TCP/IP RM can be found elsewhere, for example in [PD00,
Tan96, PC93].

2.1.2 The Architecture of OSI RM

The concept of layers is a key characteristic of all communication systems. It is
a means to stepwise increase the degree of abstraction and to separate levels of
abstraction by precisely defined interfaces, and is reflected by the use of protocol
stacks. The OSI RM is the most prominent framework for a layered communica-
tion architecture. We do not repeat OSI RM to the full extend, we just would like
to remind the reader of the basic outlook, see figure 2.1: Several network layers
are stacked upon each other, each layer realizing a complete network of its own.
Higher layer network services rely on lower layer services until a physical layer
is reached.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Physical media for OSI

Open
System

Open
System

Peer protocol

Figure 2.1: OSI seven layer reference model, see [ITU94, p.31]

Further introductory information can be either retrieved from the X-Series of
the ITU-T recommendations or from textbooks. Almost any textbook on computer

32 Foundations

networks and/or data communications gives an introduction into OSI RM, for ex-
ample [Tan96, Hal96]. For the purpose of this discussion, we take the part of OSI
RM that concerns the separation of one layer from another. This selection restricts
the considerations on the cooperation of two arbitrarily selected but adjacent lay-
ers as shown in figure 2.2. The upper layer is referenced as layer(N), the lower
layer as layer(N − 1).

Service Provider

Service User

SAP
[SAPI, QoS] CEP

[CEPI]

uses
services

provides
services

Connection

Service Provider
exchange

PDU

SDU
exchange

SDU
exchange

Service UserLayer (N)

Layer (N-1)

Figure 2.2: Layers, SAPs and CEPs according to OSI

The Layer Model in OSI RM

Any entity of layer(N) uses services provided by the adjacent lower layer(N−1).
Layer(N) is theservice userthat uses services provided by theservice provider,
namely layer(N − 1). By definition,servicesdescribe the capabilities of the pro-
visioning layer and are expressed in terms ofservice primitives. Service primitives
are a way of describing the service interface independent of an implementation;
that is why they are also calledAbstract Service Primitives(ASP). ASPs could
be implemented as procedure calls, library calls, signals, method calls etc., de-
pendent on the implementation platform and language used. The “point” at which
the service provider publishes its services for access to potential users is called
Service Access Point(SAP). The SAP defines the interface between a service user
and a service provider. This not only includes a set of dedicated service prim-
itives but also all allowed sequences of service primitives that are possibly ex-
changed between the service user and the service provider. An identifier, called
Service Access Point Identifier(SAPI), uniquely identifies the SAP within its
namespace and is used for addressing purposes. For connection-oriented services,
a connectiondescribes a logical association between two peer entities located in
different nodes. The SAP “owns” theConnection Endpoints(CEP) of the con-
nection; each of them is identified by aConnection Endpoint Identifier(CEPI).

2.1 Reference Models: OSI and TCP/IP 33

Services not establishing a connection are called connectionless.Quality of Ser-
vice (QoS) attributes may be attached to the SAP characterizing the qualities of
a connection-oriented or connectionless communication relation in terms of reli-
ability, throughput etc. A complete description of the basics of the OSI Reference
Model with precise definitions of the concepts informally introduced is given in
the standard [ITU94].

It is important to remember that OSI RM clearly distinguishes two commu-
nication relations: layer-to-layer (“vertical”) communication from peer-to-peer
(“horizontal”) communication. “Vertical” communication refers to the exchange
of information between layers (that is levels of abstraction usually within the same
physical entity) in the form ofService Data Units(SDU). “Horizontal” communi-
cation refers to the exchange of information between remote peers. Remote peers
are physically distributed and communicate with each other according to a proto-
col in the form of protocol messages, also calledProtocol Data Units(PDU),
thereby sharing the same level of protocol abstraction. PDUs are the vehicles
for SDUs. A single SDU may be packaged into one or more PDUs. Such PDUs
are also calleddataPDUs. Non-data PDUs are calledcontrol PDUs. In a multi-
layer communication architecture, the service provisioning layer(N − 1) in fig-
ure 2.2 becomes the service user of the next lower layer(N − 2). The PDUs of
layer(N − 1) get packaged into SDUs towards layer(N − 2). Thus, the concept
of a connection is purely virtual unless a physical layer of transmission is reached.
From a service user point of view the transfer of SDUs to/from its remote peer is
transparent. Therefore, PDU handling of the service provisioning layer is not of
interest. This is what is meant by the principle of abstraction in communication
architectures.

The distinction vertical/horizontal is also reflected in terminology: layers com-
municate via aninterface, remote peers via aprotocol. This convention in termi-
nology is seldomly followed and sometimes causes confusion between software
and system engineers. Especially the term “protocol” (so is “peer-to-peer commu-
nication”) has a refined meaning in data and telecommunications. Even though the
concept of a protocol is generally defined as a set of messages and rules,3 software
engineers assume a reliable, indestructible communication relation in their soft-
ware systems, whereas data/telecommunication engineers have to face the “real”
world: they have to add error correction, connection control, flow control and so
on as an integral part to the protocol. A communication relation between remote
peers can always break, be subject to noise, congestion etc. This aspect, which
characterizes distributed communication, is the reason why data and telecommu-
nication engineers introduced layers of protocol and service abstraction into their

3Take e.g. the definitions given by [Tan96, p.27] as a representative of the data communication
camp and [Bal96, p.191] as a representative of the software engineering camp.

34 Foundations

models.
The most striking observation regarding layers in telecommunications is that

the SAP and its “included” CEPs are the key concepts. OSI does not reveal how
these concept can be noted or visualized, nor does it formally define the seman-
tics of the SAP and the CEP concept. Early examples of capturing the SAP con-
cept can be found in the standard of the Specification and Description Language
(SDL) [ITU99a]. Since SDL was developed with a strong impetus of the telecom-
munication industry, the designers of SDL provided some application suggestions
for typical telecommunication problems. The SAP was no exception. The sug-
gestion that is given as an example for layering by service access “modeling” is
described in [ITU93g] and elaborated on in [EHS97]. It is distinguished between
a service user and a service provider but the service access is reduced to signal
lists to specify the SAP interface. The CEP disappears completely. The example
indicates that although the SAP and the CEP have been well-known concepts for
quite some time now (more than 15 years) they do not seem to be sufficiently un-
derstood as modeling concepts, which requires some more attention and careful
design. OSI does not give any precise answer how to model(!) systems according
to the reference model. Take, for example, connections: typically, connections are
dynamic and not static, they need to be set-up. What does that mean for the ab-
straction of a connection? Where does a connection come from? Out of the blue?
What about connectionless communication, how is that modeled?

It is a characteristic of OSI RM and the subsequently presented TCP/IP RM
to focus on vertical communication and to even subsume horizontal communica-
tion under vertical communication. That is why the CEP is regarded as something
internal of the SAP, see figure 2.2; this bias towards vertical communication is
one of the main (mental) hinders that prevent designers to clearly abstract com-
munication systems on a specific layer of horizontal communication. OSI RM is
simply not clear on that issue how to properly abstract communication layers.

A great deal of this work concerns the vertical and the horizontal interface
and an approach that respects vertical and horizontal communication as equally
important design principles.

Service Access Example

A simple example illustrates the service access and its functioning according to
OSI. The example is based upon the “Abracadabra” service as given in [ITU93f,
Annex F], which describes a reliable, connection-oriented service. The “Abra-
cadabra” service is composed of the service primitives shown in following list:

2 connection.request andconnection.indication

2 connection.response andconnection.confirmation

2.1 Reference Models: OSI and TCP/IP 35

2 data.request anddata.indication

2 disconnect.request anddisconnect.indication

The service primitives follow the formatprimitive name“dot” primitive type.
The service primitive type is determined by the role of the service user and the
service provider, respectively, and the direction of provisioning. When the service
users acts as a requestor it may send arequestto and receive anconfirmation
from the service provider. When, on the contrary, the service provider acts as an
indicator it may send anindication to and receive aresponsefrom the service
user. These four types cover all possible communication relations independent of
the service primitive name. Usually, parameters are attached to service primitives.
For example, a connection request has to include the sender’s and the receiver’s
address, otherwise neither the request can be targeted towards a specific communi-
cation partner nor the response re-addressed to the source. For the sake of brevity
parameters have been left out.

The interface by means of the SAP can be described by a Finite State Ma-
chine (FSM), see figure 2.3; the notation used is informal. The FSM specifies all
allowed sequences of service primitives of the service incarnated by the SAP. In
the symmetrical version of the example service any user can initiate a connec-
tion request, there is no client-server relationship. Supposed that we are having
two service users A and B, and let A wish to establish a communication relation
with B for data exchange. Since A cannot communicate directly to B without any
foreign help, A sends aconnection.request to its service provider. Assumed that
both SAPs of A (SAP-A) and B (SAP-B) are in the initial stateNULL, A’s request
causes a transition fromNULL to stateConnection Pending of SAP-A. It is out
of scope of this discussion, but somehow the peer service provider at B’s side de-
livers aconnection.indication to B as a reaction on A’s request. SAP-B changes
to stateConnection Pending as well. B submits aconnection.response to its ser-
vice provider indicating that it accepts the connection request. SAP-B changes
to stateData Transfer. In case that B would like to reject the request it alterna-
tively submits adisconnect.indication, returning SAP-B to stateNULL. Again, A’s
service provider is “magically” informed by B’s service provider about B’s deci-
sion. If B agrees to the connection request, A’s service provider delivers acon-
nection.confirmation to A. SAP-A follows changing to stateData Transfer. On a
bi-directional connection any user may now submit adata.request, which results
in delivery of adata.indication to the other party. At any time each of the users may
want to actively close an established connection by sending adisconnect.request.
Similarly, any user can be informed anytime via adisconnect.indication that the
connection does not exist anymore.

Note that we exemplified vertical communication, i.e. service access in this
subsection. We always need to be absolutely clear about which aspect of commu-

36 Foundations

Data
Transfer

Connect.
Pending

NULL

Error

connection.request
connection.indication

connection.confirmation
{if connection.request before}

connection.response
{if connection.indication before}

disconnect.request
disconnect.indication

disconnect.request
disconnect.indication

connection.*data.indication
data.request

disconnect.request
disconnect.indication

data.indication
data.request

data.indication
data.request

Note: (a) The occurrence of not specified
service primitives at specific states is
“ignored”; (b) Error Handling is a local matter.

Figure 2.3: Finite state machine of the SAP

nication we are talking about in order to not confuse different sorts of relations:
inter-layer communication via service access interfaces is not the same as intra-
layer communication is between peers of a network layer. Horizontal communica-
tion via protocols will be discussed later. Horizontal communication is not made
explicit in OSI RM and TCP/IP RM.

2.1.3 The Architecture of TCP/IP RM

The other well-known reference model for communication systems is the widely-
spread Internet protocol suite, namely TCP/IP (Transmission Control Protocol/
Internet Protocol). Because of the “implement first and (maybe) document later”
mentality in the early days during the birth of the Internet, the reference model
is nowhere explicitly written down. Nonetheless, TCP and IP are the dominating
protocols used forinterconnecting networks(the reason for the name “Internet”)
so that they becamethe reference for the whole Internet communication technol-
ogy. Actually, the Internet as we know it today consists of several dozen protocols,
but the main spirit in design still honors the TCP/IP reference model.

The Layer Model in TCP/IP RM

The TCP/IP protocol suite is designed according to the same general principles
as OSI is, both reference models have much in common. The difference is rather
to be found in the terminology and the philosophy about the layers required. Fig-
ure 2.4 contrasts the protocol stack of OSI and the TCP/IP RM. The transport layer

2.1 Reference Models: OSI and TCP/IP 37

is typically realized by TCP or UDP (User Datagram Protocol) [Pos80], the net-
work layer by IP. UDP and IP are connectionless protocols, TCP is a connection-
oriented protocol. Underneath IP a variety of technologies may implement the
lower layer(s); the Ethernet [Spu00] is a standard example. Atop TCP comes the
application layer; there was no need seen for a presentation and session layer in
TCP/IP RM. A very popular application protocol of the Internet is the Hyper-
text Transfer Protocol (HTTP) [FGM+99], a protocol for browsing and surfing
the World Wide Web (WWW). Other examples are the File Transfer Protocol
(FTP) [PR85] and the Simple Mail Transfer Protocol (SMTP) [Kle01].

Not present
in the model

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI

7

6

5

4

3

2

1

Application

Transport

Internet

Host-to-network

TCP/IP

Figure 2.4: The TCP/IP reference model, taken from [Tan96, p.36].

Table 2.1 lists some of the key terms we have introduced in the OSI section
above and maps them to the corresponding terms in TCP/IP. For example,con-
nection endpointcorresponds tosocketin TCP/IP, aservice access pointto port,
andservice primitiveto service call. Throughout this work, we will mostly use
the OSI terminology instead of the TCP/IP terminology. Reason is that the OSI
terminology is much better defined than TCP/IP.

Table 2.1: Mapping of OSI terminology to TCP/IP terminology

OSI Term TCP/IP Term

service provider host
service access point port
service primitive (service) call
connection connection
connection endpoint socket
connection endpoint identifiersocket address

38 Foundations

Service Access Example

The TCP layer provides some few primitives to the application layer. The TCP
protocol is specified in [Pos81b], table 2.2 lists the primitives provided.4 Note,
that the service primitives do not follow the same strict classification in primitive
types as OSI does; there are no explicit service requests, confirmations etc. TCP/IP
service primitives are pragmatic in design, since they can be interpreted as library
or procedure calls of call-by-value type with possible return values. Remember
that TCP/IP was first implemented on UNIX machines. In that sense, the TCP/IP
specification is less “abstract” than OSI is.

Table 2.2: Service primitives of TCP as specified in [Pos81b]; “m” indicates
mandatory, “o” optional parameters

Primitive Parameters Return Value

LISTEN (shortcut for “passive”OPEN)
OPEN m local port, foreign socket, ac-

tive/passive
local connection
name

o timeout, precedence, security/
compartment, options

SEND m local connection name, buffer ad-
dress, byte count, push flag, urgent
flag

o timeout
RECEIVE m local connection name, buffer ad-

dress, byte count
byte count, urgent
flag, push flag

CLOSE m connection name
STATUS m local connection name status data
ABORT m local connection name

When the primitiveOPEN is submitted, TCP establishes a connection between
the caller and the callee specified in the parameters ofOPEN. Correspondingly,
CLOSE causes the connection to be released.SEND requests the data given to
be sent over the specified connection. By submittingRECEIVE, the TCP user
indicates readiness to receive data. TheABORT primitive requests an “urgent” re-
lease of the connection accepting even pending data not to be processed anymore.
STATUS is an implementation dependent user command, optional in use, and re-
turns information about the local connection. Some implementations also use the

4Clarifications and bug fixes of TCP are detailed in [Bra89], extensions are given in [JBB92].

2.1 Reference Models: OSI and TCP/IP 39

LISTEN primitive, which blocks the service user, meaning that the service user
indicates to the provider that it is ready to accept any call from the provider.LIS-
TEN is identical to a “passive”OPEN. That is, the service user is ready to react
e.g. on interrupts triggered by the TCP layer. Similarly,RECEIVE indicates the
user’s willingness to process any data received by the TCP layer. The primitives
given in table 2.2 (exceptLISTEN; STATUS is optional) form the minimum set of
services all TCP implementations have to support. The transfer of SDUs between
the application and the TCP layer is done via buffers.

The state machine, which describes the behavior of the SAP between TCP and
the service user is quite simple and shows quite much similarities to theabra-
cadabraservice specification in the section above. That is why a corresponding
state machine is not presented here.

Two small Python [Lut01] programs taken from the Python documentation5

exemplify the use of a TCP service provider to establish a connection, transfer
data, and eventually release the connection. Figure 2.5 shows the code of a very
simple server application relying on TCP as a transport network layer, and fig-
ure 2.6 the corresponding code of a rudimentary client application on top of TCP.

Echo server program
import socket

HOST = ’’ # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print ’Connected by’, addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Figure 2.5: A simple server using TCP services written in Python

The Python module used for socket programming (line #2 in both listings) pro-
vides access to the commonly used Berkeley Standard Distribution (BSD) socket
interface [Ste98]. What is intended to show here is to give the reader an impres-
sion of how surprisingly simple it is to access TCP services. Since the programs
are almost self-explaining, only some few comments are given: Before the client
contacts the server, both programs have to instantiate a socket objects; the server

5See also http://www.python.org; the programs are written in Python version 2.2.

40 Foundations

Echo client program
import socket

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(’Hello, world’)
data = s.recv(1024)
s.close()
print ’Received’, ‘data‘

Figure 2.6: A simple client using TCP services written in Python

has to be executed prior to the client, of course. The server’sbind command asso-
ciates the socket object to a socket address, which is composed of the IP address
of the server’s host and the port address. After that the service goes to stateLIS-
TEN, waiting for a connection request. If a client connects, the server waits for
data transmission over the connection (conn.recv with a buffer size of 1024 bytes)
and echoes the data back to the client before it closes the connection. The client
program requests a connection to the server’s socket address and sends the “Hallo,
world” over the connection. Data received by the client is printed before the con-
nection is closed.

2.1.4 Conclusions

The OSI and the TCP/IP reference model have much in common. They differ
more in terminology and implementation of concrete protocol stacks than in their
general design principle. Decisive is the stacking of complete network layers, and
the notion of services and protocols. The following few conceptions are central
for both reference models:

2 Horizontal or intra-layer communication goes viaconnection endpoints; the
communication relation may beconnectionlessor connection-oriented.

2 The communication relation is specified in form of a(communication) pro-
tocol. Sometimes we will refer to communication protocol messages as Pro-
tocol Data Units (PDUs).

2 Vertical or inter-layer communication goes via(service) interfaces, also
calledservice access points.

2.1 Reference Models: OSI and TCP/IP 41

2 The service relation is specified in form of aservice protocol, often also by
means ofservice primitives. We will also refer to individual service protocol
messages as Service Data Units (SDUs).

Please note that this list results from an unbiased, fresh few on OSI RM and
TCP/IP RM. So far, in literature and even in the OSI standard, communication
systems are notoriously viewed from an implementation point of view. With an
implementation focus, it is the service interface and the communication protocol
that can be put in code; horizontal communication relations remain purely virtual
and are, at best, hidden in some data structures. This implementation perspective
is also apparent in the OSI RM, the concept of a (virtual) connection remains a
helping construct. Very often it is overseen that the U-shape of the OSI RM (see
figure 2.1) is caused by this implementation perspective that requires to implement
service interfaces down to the lowest, the physical layer. Even a respected author
like TANENBAUM shows to be biased. He regards three concepts as central to the
OSI model: services, interfaces, and protocols [Tan03, p.44] – and forgets about
the forth one, the connection endpoint as the corresponding interface for protocols.

This strong bias towards an implementation perspective is – according to the
author’s opinion – the main reason why there has not been developed a systematic
(unbiased) modeling approach for communication systems yet. It is a major con-
tribution of this work to re-discover and re-install basic structuring principles of
communication systems. As the attentive reader might have noticed, the symme-
try of the concept pairs connection endpoint/communication protocol and service
access point/service protocol is a first step in this direction. There is no precedence
of one concept pair over the other.

Consequently, we cover each concept pair including all related implications
in main chapters. Horizontal communication with its core concepts of connection
endpoints and communication protocols cover the aspect ofdistributionin a com-
munication system. We will devote a complete chapter, chapter 4, on that subject.
Vertical communication with its core concepts of service access points and ser-
vice protocols cover the aspect oflayeringnetworks. Another chapter, chapter 5,
is devoted to that subject. As we will see, distribution and layering are much more
general design principles than horizontal and vertical communication are.

To summarize: Our approach originates from a harmonized view on OSI RM
and TCP/IP, which have very much in common on their general design principles.
We just break with a long lasting tradition to favor an implementation perspective.
As a result of that we span our modeling space along the principles of

2 distribution and

2 layering.

42 Foundations

In the next section, we will add another, complementary view on communica-
tion systems: networked real-time systems. This view will contribute a third major
principle.

2.2 From (Embedded) Real-Time Systems to Communication Networks 43

2.2 From (Embedded) Real-Time Systems to Com-
munication Networks

A communication network is composed of distributed but communicating nodes
of resources, each of them controlled by an embedded real-time system. In this
section, the properties and the general structure of a real-time system and its ex-
tension to a communication network are discussed. In specific, we develop an un-
derstanding of the types of communication as a result of an controller/controllee
relationship and conclude basic language conceptions for building real-time sys-
tems.

2.2.1 (Embedded) Real-Time Systems

The use and the understanding of the term “real-time system” is not consistent in
the literature. It is a mixture of characterizing attributes and structural properties
of a system. For example: On one hand it is said that a real-time system fulfills
timing constraints, i.e. a real-time system has to react to a stimulus in a certain
time frame; in this example the guaranteed response time is an attribute, which
characterizes a real-time system. On the other hand, real-time systems are often
classified as “embedded systems”. An embedded system is seen as a specific part
of a larger system, which is a structural aspect. Besides this lack of clarity in
terminology, there is not even common agreement on the word “real-time”. The
following paragraphs summarize findings from studying the literature.

Real-time systems are defined as those systems in which the correctness of the
system depends not only on the logical result of computation, but also on the
time in which the results are produced [Sta88]. After more than a decade this
definition still seems to be the greatest common denominator. Here, “real-time”
is an attribute to “system”. Because of their specific field of application, further
attributes are usually associated with real-time systems. Included in this category
are e.g. reliability, fault tolerance, adaptability, and speed [Tuc97].

The most popular classification is the distinction inhard and soft real-time
systems. Hard real-time systems are under deadline constraints. Passing a dead-
line is considered unacceptable. A soft real-time system retains some tasks, which
are still valuable for execution even if they miss their deadlines [Tuc97]. Follow-
ing [SGW94] telephony systems belong to the class of soft real-time systems:
passing of deadlines is accepted as long as the number of failures is below a de-
fined threshold. While this might be true in general there are other components
in telecommunication networks, which have to fulfill hard real-time constraints.
For example, the time delay perceived as acceptable for voice transmission in a
speech conversation places tough time limitations on a mobile phone for speech

44 Foundations

en- and decoding including cyphering and channel coding.
A very rudimentary structure of the basic elements of a real-time system is

given by [SGW94], see figure 2.7: it consists of hardware,sensorsandeffectors,
the environment, and software. The sensors and effectors interact with the environ-
ment, the software controls the actions of the hardware via a hardware interface.
A similar description using different terminology can be found in [Sta96]: A real-
time system consists of a controlling and a controlled system. The controlling
system interacts with its environment using information about the environment
available from various sensors and activating elements in the environment through
“actuators”. The controlled system can be viewed as the environment with which
the computer interacts.

EffectorEffector

SW

SensorSensor

embedded system

HW
Interface

environment

Figure 2.7: The basic elements of a real-time system

There is a loose reasoning as to why timing aspects and structural issues of
a real-time system are related: Timing correctness requirements arise because of
the physical impact of the controlling systems’ activities upon its environment.
That means that the environment needs to be monitored periodically as well as
that sensed information needs to be processed in time [Tuc97]. This implies that
we have to distinguish the environment from a controlling part and that detecting
and acting devices are needed.

The definition of an embedded system is vague; it mainly describes a struc-
tural aspect. In its most general form, an embedded system is simply a computer
system hidden in a technical product [Sim99]. A more concrete definition is, most
embedded systems consist of a small microcontroller and limited software situ-
ated within e.g. an automobile or a video recorder [S+96]. Three issues seem to
be important here: (1) size matters, (2) an embedded system is part of a technical
system, and (3) it serves the purpose of the technical system and not vice versa.
Issue (3) especially helps deliminate non-embedded systems from embedded sys-
tems. A PC (Personal Computer) for instance is a general purpose computing
machine, the software and the CPU (Central Processing Unit) are an integral part
of it. This eliminates a PC from being an embedded system. A counterexample

2.2 From (Embedded) Real-Time Systems to Communication Networks 45

might be a mobile phone. The DSP (Digital Signal Processing) chip and its soft-
ware serve a single purpose: to offer phone functionality.

Embedded systems may or may not have real-time constraints [Sta96], but
many real-time systems are embedded systems [S+96].

To summarize: The special character of systems, which have a physical impact on
the “real” world by means of reactiveness is most significantly described by the
requirement on the timing constraints to be met by the system. Such systems are
calledreal-time systems. Additional properties, which reflect other aspects of the
physical impact character, include reliability, fault tolerance, stability, safety and
so on. As yet there is no commonly agreed list of properties, which constitute a
real-time system. Moreover, the physical impact nature of such systems implies a
rough structure (Fig. 2.7): a controlling part interacting with the environment (the
controlled part) through sensors and effectors. The hardware mediates between
the sensors/effectors and the software of the system. Many real-time systems are
embedded systems, that means they serve a specific purpose in a technical system.
This is actually the case for all nodes in a telecommunication system.

The model identified so far is not specific enough to allow any detailed insight
into the nature of real-time systems, especially for structural properties. There is
a need for further considerations. A slightly extended model of real-time systems
will help improve the understanding of such systems from an architectural and
modeling point of view.

2.2.2 An Extended Model of Real-Time Systems

Figure 2.8 shows a slightly extended model for real-time systems. What adds some
more structural aspects to the model are the distinction of a technical system and
the environment, the explicit mentioning of a user, and the intrinsic motivated as-
sociation of the software of the controlling system with the controlled system by
means of a Controlled Domain Model (CDM). As the reader will notice, the fol-
lowing discussion of the extensions is influenced by a system theory approach.
After the discussion we will draw first conclusions about suitable modeling con-
ceptions.

The Model

The basic elements of a real-time model still remain valid: it consists of a con-
trolled system and a controlling system. Sensors and effectors classify two types
of devices, which reflect relations of impact. Sensors communicate events of the
controlled system to the controlling system, whereas effectors do the opposite.
The model tries to separate structural issues from system attributes. For example,

46 Foundations

environment

EffectorEffector

SW

SensorSensor

controlling system

HW
Interface

+ reactiveness, reliability, fault tolerance etc.

user
controlled system

technical
system

C
D
M

CDM Controlled Domain Model

Figure 2.8: An extended model for real-time systems

the decomposition of a system in a controlled and a controlling system is a struc-
tural property. Reactiveness under specific time constraints is an attribute, which
leads to the classificationreal-time. As previously mentioned, further properties
might refine the attribute “real-time”. This is indicated in figure 2.8 by some “at-
tributing” text.

The box labeled with “HW” condenses the hardware required to establish an
interface between the sensors/effectors and the software; it could be, for exam-
ple, an analogue/digital (A/D) converter. The computing platform as well as other
hardware devices are neglected but can be subsumed under the “HW” box if needs
be. Note that we cannot make any assumptions about the hardware structure. We
do not know if a pair of sensors/effectors is associated with a single A/D converter
or not.

Sensors and effectors could be interpreted as exporting, respectively import-
ing reference points in the controlled system. Consequently, sensors and effectors
belong to the controlled system. This fact is not sufficiently reflected in figure 2.8.
Reference points are associated with an entity in the controlled system. Anexport-
ing reference point is a defined exit point of matter, information, or energy from
the technical system to the external world. The intention is to allow the state of the
external world to be influenced in a specific way. Animporting referencepoint is
a defined entry point of matter, information, or energy from the external world to
the technical system, which allows the state of the technical system to be changed.
Note that reference points are an intellectual concept and denote only those entry/
exit points, which are relevant to the technical system, others are neglected.

Physically, a transfer of matter, information, or energy is always equivalent
to a change of state; it is experienced as a loss or gain of matter, information, or
energy. Even though every technical system is physical, the point is that a technical

2.2 From (Embedded) Real-Time Systems to Communication Networks 47

system is a construction that is sensitive to some physical changes in state at its
reference points and while remaining relatively insensitive to others. A sensor, for
example, ideally is a technically state insensitive reference point; it should transfer
information about the technical system’s internals without changing a technically
sensitive state. In this sense, a sensor simply observes the controlled system and
reports its observations to the controlling system. In contrast, an effector should
have impact on a technically sensitive state.

The controlled system is not equal to the environment, it covers just a part of
it as there are only technical entities with associated reference points (sensors and
effectors). This view is fundamentally different to the traditional one of real-time
systems. What is new is the introduction of atechnical system. The technical sys-
tem is composed of technical entities. Many of these entities have an impact on
or are in connection with the physical world, namely the environment. The rela-
tion between technical entities is defined by the technical system. These relations
might be mechanical, electromagnetic, chemical, etc. Additionally, the technical
system might interact with a user. A system, which has no user interface, is called
autonomous. The interaction between the technical system and its environment or
a user is also via reference points in the technical system.

In practice, a real-time system is usually seen as a component of a technical
system. For example, it would be inconceivable for today’s automobiles not to
have computers controlling the fuel-injection engine. According to our view, the
controlling system resides outside the technical system because reference points
mark interfaces to the external world and hide implementation details. Interfaces
are some kind of ports to the outside and reflect “expectations” of the external
world; it is insignificant as to how the external world looks. For example: The
component “engine” of a technical system “car” demands specific synchronizing
conditions on fuel-injection, which are formulated as requirements. Maybe the
engineers come up with a mechanical solution or they decide to define suitable
reference points for sensors and effectors and control fuel-injection by a com-
puting device.6 Once a specific solution is established, it is typically regarded as
a technical component of the system. This ultimately blurs the system’s borders,
which conceptionally still exist. Here, we will stick to a clearer conceptional view.

To wrap up: (1) The controlling system, users, and the environment are exter-
nal to the technical system; the distinction made is a classification of the technical
system’s external world. (2) Reference points are associated with technical enti-
ties and point out interfaces to the external world. (3) Reference points are either

6In fact, the topic is a bit tricky: a mechanical solution requires different kinds of reference
points compared to a computer controlled solution. Ergo, the definition of reference points marks
a decision that is a constraint on the solution space. The point is that reference points for a real-
time system shift domain! Sensors and effectors mediate between the states of e.g. a mechanical
or chemical domain and the software domain of a controlling system.

48 Foundations

importing or exporting. Exporting reference points can be sensitive or insensitive
to the technical state of the technical system.7

Every transactional system that aims to influence its environment has to be
aware of the current state of the environment [Ber99].8 However, a pure repre-
sentation of states does not help unless one knows how the states are related and
influence each other. In other words, a domain model is needed, or – according
to [Ber99] – a so-called Process Domain Model (PDM). A PDM does not only de-
fine the static structure of a domain (a so-called Structural Domain Model, SDM),
it additionally takes into consideration the processing dimension. For better nam-
ing conformity, we prefer the name Controlled Domain Model (CDM) instead of
PDM.

It is important to see that one only needs to have a CDM of the controlled
system and not of the whole technical system. This is also new and in contrast
to traditional views on real-time systems. For the purpose of the real-time sys-
tem, there is no need to completely understand the technical system, its entities
and their relations; however, it is essential to understand the function of the con-
trolled system. The only thing that must be understood by the real-time system is,
how the entities of the controlled system and the sensors and effectors function
and possibly relate to each other. In other words, the software in the controlling
system must have a built in accurate representation (model) of the controlled sys-
tem. Formally speaking, there exists an association between the software of the
controlling system and the controlled system by means of a CDM.

The interesting consequence is that we have an indication of a structural prop-
erty of the software: it must somehow reflect the domain it is controlling. The
question ishow and to which extend the CDM structures the software. In some
cases, formulas might model the controlled system, in others a set of context rules
might provide an alternative. More complicated cases require data structures and
models, which reflect properties and relations of the controlled domain. We can
state the hypothesis that the more complex the controlled system and the task of
controlling it is, the more evident the relation of the software internals (data struc-
tures, software architecture) and the controlled system structure (the CDM) must
be. In an extreme scenario the software mirrors the controlled system structure in
a one-to-one manner. In any case, the software specifies a model of the controlled
system.

7A state insensitive importing reference point is of no value; according to the definition, a
reference point is of relevance to the technical system. Ergo, state insensitive importing reference
points do not exist.

8A transactional computation depends on the state of the environment in which it is carried
out [Ber99].

2.2 From (Embedded) Real-Time Systems to Communication Networks 49

Conclusions

Given all this, how can we abstract the elements of a real-time system such that
we get a notion of language constructs needed for modeling a real-time system?

As we learned, a key characteristic of the controlling system is that it behaves
reactively i.e. on a stimulus it reacts with a response; so does – just in an inverse
sense – the controlled system. Both, the controlling and the controlled system have
a state and behavior. The notion of an(re)active objecthaving its own thread of
control is a meaningful abstraction for both systems. The spontaneous rise of one
or more stimuli or responses at the very same point in time gives a preference for
anasynchronous communication paradigm.

We also learned that the sensors/effectors together with the HW can be re-
garded as definedinterfacesthat transform means of notification from one media
towards another media (here from a physical world of e.g. mechanical devices to
units of software). An appropriate abstraction of a notification mechanism that
initiates an activity at the receiving (re)active object is the notion of amessage.
Messages support the demand for asynchronous communication. With the notions
of (re)active objects, interfaces, and messages, the distinction between hardware
and software has become obsolete.

The controlling system has an internal representation of the state space of the
controlled system (the CDM) in order to meaningful operate on the controlled
system. It is the CDM that qualifies a distinction of roles: a controlled system
and a controlling system. The controlled system does not have an internal state
representation of the controlling system. For convenience, we also call the con-
trolled system theresource provider, the controlling system theresource user, and
the CDM the user’sresource model. We will use these terms later on in a more
generic context that is not bound specifically to the notion of real-time systems.

So far, we are not very precise about what we actually mean by(re)active
object, messageand so on, although we use common terms of computer science.
The meaning will be more refined, when we come to a realization of the mentioned
conceptions in a concrete language, namely ROOM.

2.2.3 Collaborating Distributed Real-Time Systems

In particular, telecommunication systems are characterized by a network of dis-
tributed collaborating units. Therefore it is of special interest to discuss some con-
sequences if two or more real-time systems modeled according to figure 2.9 col-
laborate and communicate to each other. In figure 2.9 some elements of a real-time
system model are removed for reasons of simplicity.

The interaction of two technical systems is at first sight outside the context
of the controlling system. Two technical systems can physically only interact via

50 Foundations

SS

EE
SW

user
HW

SS

EE
SW

user

interface

Figure 2.9: Collaborating distributed real-time systems

two or more technical entities. In principle, this can be any entity in the upper or
lower technical system in figure 2.9. Communication is established via an exter-
nal connecting entity. This entity is usually part of the environment. Two phones
could be, for example, either connected by a fiber optics cable or, in the case of
mobile phones, by the “air” (electromagnetic waves). Instead of an external entity,
a shared technical entity might also be an option, but this blurs the system’s bor-
ders. To be conceptionally clear, such a shared resource should be moved out and
be defined as external, while replacement entities in the technical systems have to
be introduced if required.

If some sort of connectivity of the technical system is of relevance for the
controlled system, the connectivity is reflected in the resource model of the con-
trolling system as well. That means that the communication relation between two
(or more) technical systems has its correspondence between resources of the re-
source model of the controlling system; this is indicated by the dashed arrow next
to the solid arrow in figure 2.9. If the resource model is internally structured in
hierarchical layers of abstraction (as it usually is), we will also find the communi-
cation relation abstracted on these layers. This abstraction technique is well known
in the telecommunication domain; the most prominent example is the OSI (Open
Systems Interconnection) reference model [ITU94]. The notion of layered com-
munication relations is shown by further dashed arrows between the controlling
systems in figure 2.9. If communication facilities are offered as services to users,
the users experience a high-level of communication (as a result of abstraction
levels in the controlling system) that goes far beyond the facilities of the commu-
nication relation between entities of the technical system. If the real-time system
is autonomous, it is an application inside the controlling system that benefits from
a high-level communication instead of an “external” user.

2.2 From (Embedded) Real-Time Systems to Communication Networks 51

2.2.4 Collaborating Networks

Very often it is overseen that not only nodes may compose a network but also net-
works may collaborate and compose more complex networks. This sort of compo-
sition is shown in figure 2.10. The figure is not 100% accurate, since the networks
must either share parts of their technical system or establish a communication
relationship in order to cooperate.

S
E SWHW

S
E

SW
HW

Figure 2.10: Collaborating networks

The individual networks of the “supernetwork” are calledplanes. We already
gave an example and an explanation in the introduction chapter: very common is
the distinction in a control plane and a user plane. It is a repetition of the controller/
controllee relationship just on a network level.

2.2.5 Summary

The discussion of real-time systems aimed at two points: (1) We motivated basic
language conceptions required to model real-time systems. A modeling language
that suits the discussed needs for real-time systems is presented in the next sec-
tion. (2) We discussed the consequences of a controller/controllee relationship:
that the controller must have an internal representation of the controllee at his
disposal, otherwise the controller cannot use the controllee for his own purposes.
We agreed upon to speak more generally of resources, resource models, resource
users and resource providers. When we moved on to discuss distributed real-time
systems, we saw that distribution demands communication relations for collabo-
ration and that these communication relations are reflected in the resource model
of the resource user. We also learned that communication relations are usually

52 Foundations

abstracted to more high-level communication relations. Finally, we also saw that
planes of networks build up supernetworks.

It makes sense to contrast a controller/controllee (user/provider) relationship
against a peer-to-peer relationship. This distinction marks the third major design
principle for our modeling approach. Decisive for the distinction is: Who has a
Controlled Domain Model (CDM) of whom? In user/provider communication, the
user has a resource model of the provider; in peer-to-peer communication, either
both parties or no party has a resource model of the opposite side. This distinction
is the basis for differentiating different (atomic) types of communication. We will
devote a complete chapter, chapter 3, on that subject. The modeling space is now
spanned along the principles of

2 distribution,

2 layering and

2 types of communication.

What we do not consider are other issues of relevance that may shape the ar-
chitecture of a communication system. Among others we exclude non-functional
requirements such as reliability, maintainability, safety, security, compatibility, ro-
bustness, fault tolerance, and so on.

2.3 A Brief Primer on ROOM 53

2.3 A Brief Primer on ROOM

The ROOM (Real-Time Object-Oriented Modeling) language plays an important
role in this work: It is our preferred language for modeling complex communi-
cation systems. We use ROOM to describe models but also to describe patterns
of solutions. From the insights we gain throughout this work, we will also derive
extensions to ROOM that help catch specific conceptions in a much better way.

This section is a brief primer on ROOM. It does not function as a replace-
ment of the authoritative ROOM introduction, the ROOM book, see [SGW94].
Rather we informally recap the most important features of ROOM. The intend is
to provide readers with basic skills to understand the ROOM diagrams used in this
work. A more formal treatment of ROOM is presented in chapter 6.

2.3.1 Structural Elements

Actor, Port, Message, Protocol

The ROOM language is built upon the notion of anactor.9 An actor represents
a physical device or a software unit; it is a sort of active object that clearly sep-
arates its internals from the environment. Everything inside the actor, meaning
the actor’s structure and behavior, is not visible to the environment. Only at dis-
tinct points of interaction, so-calledports, the actor interfaces the environment.
A port is somewhat comparable to an interface as known e.g. in the UML but
the comparison blurs two important facts: (1) Ports in ROOM are not method in-
terfaces but message interfaces. Amessageconsists of a message name, priority
and data. Messages may be incoming and/or outgoing at a port (the direction is
always defined from the viewpoint of the actor). So, ports are message exchange
points between the actor and its environment. (2) A port is not only an interface
that tells the environment how to use the actor; it is also a definition of the actor’s
expectations on the environment. Therefore, aprotocol is always associated with
a port, which defines the set of incoming and outgoing messages that may pass
the port.10 This symmetry of a port, that it specifies not only how the environment
can use the actor but also how the actor can use the environment, is an important
distinction to the notion of an interface in OO.

An actor is specified by means of anactor class. It may contain port specifica-
tions and further aspects we will come to in a minute. An actor class is symbolized

9Other terms and synonyms for actor arecomponentandcapsule.
10ROOM’s definition of a protocol does not match the OSI definition: the former refers to a

protocol as a set of messages, the latter includes message sequences as rules. We therefore prefer
to call a defined set of messages amessage schema, and a message schema plus rules aproto-
col. Nonetheless, in the ROOM context we will often stick to the termprotocol in order to stay
consistent with the terminology used in the ROOM book.

54 Foundations

by a rectangular box with a thick black border. A port is figured by a small squared
box that appears on the border of an actor class symbol. An example is shown in
figure 2.11. By convention, actor class names start with a capital letter, port names
with a small letter.

ActorClass

portA

portB

Figure 2.11: Actor class with ports

The message protocol (better: message schema) associated with a port is usu-
ally specified in text and does not explicitly appear in the diagram. What we can
also see from figure 2.11 is that ports may have areplication factor, indicated by
the “shadow line” at portportA. The precise number of replica of a port is not
included in the graphical representation. Replication in fact is a way of indexing
ports with e.g.portA[0] being the first port,portA[1] being the second one, and so
on. Non-replicated ports have no index and appear just as e.g.portB.

Actor Reference, Binding, Contract

An actor can be composed of other actors. In ROOM, references describe compo-
sitions. That means, an actor class specification may reference zero or more other
actor class specifications. Such a reference is calledactor reference; it is a way to
include other actors into the name space and life-time context of an actor. Circular
references (A referencesB, andB referencesA) are forbidden. Per actor reference,
a replication factordetermines the maximum number of valid actors of the refer-
enced actor class that can be put in context. By default, the replication factor is set
to one.

The following types of references can be distinguished: an actor reference
may be fixed, optional, imported or substitutable. These types specify run-time
relations. For afixedactor reference, actors of the referenced actor class are in-
carnated along with the incarnation of the composing actor. If the actor reference
is declared asoptional, actors of the referenced actor class can be dynamically
created and destroyed during the life-time of the composing actor. The maximum
number of allowed actors (given by the replication factor of the actor reference)

2.3 A Brief Primer on ROOM 55

may not be exceeded. If declared asimported, an actor that already exists in an-
other context of another composing actor is plugged-in at incarnation of the com-
posing actor. That means, a single actor instance may act in two or more contexts
of a composing actor: in the context of the “original” composing actor that cre-
ated the actor and owns the permission to destroy it, and in the context of one or
more other composing actors which imported that specific actor.11 Imported actor
references are a powerful tool to define different roles for different contexts of an
actor and thereby to define patterns of collaboration. We will extensively make
use of this feature. The risk is to misuse this feature and violate a design rule such
as the “Law of Demeter” (only talk to your immediate friends) [HT99]. Asubsti-
tutableactor reference means that any actor instance of that actor reference can
be replaced by another actor, provided that the other actor’s class specification is
compatible with the referenced actor class of the actor reference. Here, compat-
ibility means that the other class specification supports at least the same set of
ports (with the same message schema).

To build up complete structures of actor references, there have to be some
means to interconnect their ports. This is done by so-calledbindings, sometimes
also referred to asconnectors. A binding connects a port of an actor reference
either with the port of another actor reference or with a port of the composing
actor class. Bindings define communication relationships on class level. The aux-
iliary concept of acontractconsists of a binding and the two interface components
(ports) that the binding connects.

An example of an actor class specification that encompasses all the discussed
modifications of an actor reference is shown in figure 2.12. Actor references are
symbolized by a rectangular box with a thinner black border and can only appear
“inside” the context (also calleddecomposition frame) of an actor class specifica-
tion.12 Names for actor references begin with a small letter. Names for bindings
also begin with a small letter by convention. Sometimes, to avoid visual clutter,
the names of bindings and ports are not displayed in the diagram. The replication
factor of a replicated actor reference is displayed inside a box in the upper right-
hand corner. Optionality is indicated by stripes. If imported, the actor reference is
colored grey. Substitutability is indicated by a “+” symbol in the upper left-hand
corner.

For obvious reasons, the message schemata of two ports connected by a bind-
ing must match. All or a subset of the messages outgoing one port must be speci-
fied as incoming for the other port and vice versa. To simplify matters, in ROOM
both ports refer to the very same protocol specification. The port visualized by

11Imported actor references cannot be combined with the optional reference modifier.
12Note that for practical reasons we sometimes do not draw actor classes and actor references

with different lines of thickness. It is impossible to confuse actor classes with actor references,
since the latter have to be drawn inside the former.

56 Foundations

ActorClass

behavior
Component

fixed
Reference

import
Reference

optional
Reference

22

p1
p2

p3

p4
p5

Figure 2.12: Actor class containing all types of actor references

a small black box takes the protocol specification as is; the opposite peer port
(visualized by a small “white” box) “converts” the protocol specification, i.e. all
messages defined as outgoing by the protocol are regarded as incoming for the op-
posite port, and all messages defined as incoming by the protocol are regarded as
outgoing. The opposite peer port is said toconjugatethe protocol. If the protocol
is P, the conjugated version is noted asP∗.

Let us draw some special attention to contracts. All ROOM diagrams are on
specification level (or class level, if you prefer to say) that are incarnated at some
point in time during model execution. It is relatively easy to specify contracts
(remember, a contract is a binding including its ports) that cannot be incarnated
– which is a specification error and not a run-time error. The rule is to specify a
contract such that potentially all port incarnations of one side of the contract have
a unique port incarnation at the other side of the contract they can communicate to.
That means, the maximum number of possible port incarnations at both sides of a
binding specification have to match; otherwise, there are principally port instances
left with an unspecified communication partner. To be concrete, let us have a look
at figure 2.12. Portp1 has a replication factor of two; its owning actor reference
has a replication factor of one. Therefore, two incarnations ofp1 can be maximally
created at run-time. The opposite peer port ofp1, p2, has a replication factor of
one; its owning actor reference a replication factor of two. The equation resolves
to 2 = 2, which verifies a valid contract specification. It takes some time to get
used to see the consequences of replication structures on incarnation level. They
are discussed in more detail in the ROOM book, see [SGW94, p.183ff.].

New in figure 2.12 is the component that specifies the actor class’ behavior.
In fact, the behavior component is invisible; the behavior component’s border is

2.3 A Brief Primer on ROOM 57

colored in grey just for demonstration purposes. Thus, all ports of an actor class
specification that are not connected somewhere else are actually connected to the
actor’s behavior component; they are calledend ports. Otherwise, they are called
relay ports. All other ports (p3, p4) that “hang around” are also implicitly con-
nected to the behavior component.Reference ports(the name for ports of actor
references) that are not involved in a contract are actually not in use, seep5.

Note that in ROOM, relay and end ports have special notations. In our dia-
grams we deviate from ROOM in that we use black and white boxes for all kinds
of ports. This notational simplification eases the drawing of ROOM diagrams but
does not suffer semantic preciseness. Still it is unambiguous, which port is an end
port, which one a relay port, and which one a reference port.

Layer Connection, Service Provision Point, Service Access Point

The notion of layers is a built-in concept in ROOM. Layering is a form of abstrac-
tion that is used to define “islands” of self-contained functionality that provide
services to another “island” of functionality. In contrast to thehorizontalstructure
of peer-to-peer communication between ports, layers represent avertical organi-
zation of a system. The terms “horizontal” and “vertical” are apparently vague and
indicate the difficulty for giving a precise definition of layers. Actually, the sort
of interfaces used to describe layers are very close to ports. Despite the fact that
ROOM is not absolutely clear on the layering concept, here we just present layer-
ing as is without further criticism. The layering concept will undergo a revision in
later chapters.

The interface of an actor that provides (layer)servicestowards another actor
is calledService Provision Point(SPP). The SPP may be replicated; the number
of replications is given by a replication factor. Its counterpart, the interface that
accesses services of an SPP is calledService Access Point(SAP). SAPs can be
replicated as well but there rarely is a need to. The SPP and the SAP, each has a
protocol associated with it that determines the interface type. Similar to a binding,
a SPP and a SAP are connected to each other by alayer connection. By definition,
the protocol of the SPP is the conjugated protocol of the SAP. Like end ports,
SPPs and SAPs are directly available to the behavior component of an actor. All
individual layer connections between two actors including their SPPs and SAPs
are said to establish alayer contractbetween both actors.

A very simple example of a layering relationship is shown in figure 2.13. Note
that most of the language concepts for layering have a textual representation only
and do not show up in diagrams. There is just a layer connection symbol, an arrow
pointing from the SAP side to the SPP side, which always has to be complemented
by a textual description that specifies details of the involved SAPs, SPPs and pro-
tocols. Names attached to the layer connection symbol begin with a small letter

58 Foundations

by convention.

upperLayer

lowerLayer

lc

Figure 2.13: Layer connection, see also [SGW94, p.202]

So far, SAPs, SPPs and layer connections do not differ that much from ports
and bindings except for the naming. That is what makes it so hard to identify
a semantic difference. Though, since actor classes can be nested through actor
references, some conventions are required how “inner” SPPs and SAPs of an actor
reference can be used from the “outside” of the containing actor class.

An “inner” SPP can be made accessible by the actor class in form of arelay
SPP. It is the same technique to selectively export interfaces from inside-out as
we already know it from the relation between a reference port and a relay port.
Visually, a connection symbol, now calledexport connection, is drawn that points
from the border of the actor class towards the actor reference; it encompasses
all SPPs that areexportedto the actor class, see figure 2.14. For details, which
individual SPPs of the actor reference are exported, the accompanying textual
specification is to be consulted.

S

Service

ex

Figure 2.14: Export connection, see also [SGW94, p.205]

In contrast to “inner” SPPs, an “inner” SAP that is unfulfilled (meaning it is
not matched against an SPP by a layer connection) is automatically exported to
its “outer” actor class and becomes part of the interface of the actor class. Con-
sequently, there is no graphical export notation for SAPs. Automatically exported
SAPs remain totally hidden in ROOM diagrams.

The reason for this special treatment of SAPs is that SAPs in ROOM are per-
ceived as the services of an actor it requires for its implementation. All SAPs are

2.3 A Brief Primer on ROOM 59

regarded as vital for the functioning of the actor, so that selective export is no
option. All unfulfilled SAPs of an actor class (which includes automatically ex-
ported SAPs of inner actor references) are said to specify thevirtual machineof
that class.

Note: The understanding of a SAP and a SPP in ROOM differs considerably
from the conception of a SAP we derived from OSI in an earlier section. To avoid
confusions we will explicitly talk about the ROOM SAP and the ROOM SPP
when we refer to the language conception as introduced by ROOM. Otherwise,
we mean the SAP concept in the OSI sense.

2.3.2 Behavioral Elements

ROOMcharts, Scheduler

We already mentioned the behavior component of an actor. In ROOM, behavior is
specified in form of state machines, so-calledROOMcharts, a variant of HAREL’ S

statechart formalism [Har87]. Actors in ROOM are reactive objects with their
own thread of execution, which is a typical characteristic for real-time systems.
All incoming messages at the behavior component areeventsthat may trigger a
transition to leave astate, perform someaction and enter the same or another
state. For a state, entry and exit actions can be specified. Actions are specified in
a detail level language such as C [KR88], C++ [Str00] or Java [AGH00]. Aguard
(a boolean condition) can be attached to a transition, that prevents the transition
from firing if the condition evaluates to false. The concept ofcomposite states
enables the modeler to nest states within states. Once all actions have been exe-
cuted (ROOM follows the “run-to-completion” processing model), the actor “falls
asleep” waiting for further events to process. Since incoming events are queued,
the actor may immediately come busy again until the event queue is empty. Events
can also be deferred i.e. the processing is postponed. Message priorities change
the order of event processing, usually to “the more important, the more up front
in the event queue”. In principle, the scheduling semantics of theschedulercan
be adapted to any other scheme. ROOM is quite flexible in that respect to cover
a wide range of real-time applications. For example, time-based scheduling (“the
more urgent, the more up front in the queue”) may be an alternative.

Since behavioral specifications are of minor interest for us, we do not deepen
the introduction of ROOMcharts. In this work, our primary focus is on the ar-
chitecture level of system design. Therefore, the structural elements of ROOM
deserved greater detail of explanation. We just take it for granted that the reader is
familiar with state automatons and can read UML statechart diagrams [OMG01].
As a service to the reader, we will uplift ROOMcharts to UML statecharts; the
notational differences are minor. In case that there are UML statechart features

60 Foundations

that deviate significantly from ROOMcharts we will leave a note to the reader.

Data Classes

Complex data structures can be modeled using the concept ofdata classes. Data
classes correspond to traditional classes: they define data and methods that oper-
ate on them. In contrast to actors, data objects do not have their own thread of
control; they are extended state variables that are encapsulated within the actor
and are accessible by the behavior component. Typically, data classes are based
on classes provided by the detail-level programming language. That means within
an actor the modeler can use and stick to a quite traditional object-oriented design
paradigm.

In addition to their role as variables, data classes are used to define the data
carried in messages. Remember that a message consists of a name, a priority and
data, or more precisely, a data object. This single data object is an instance of a
predefined or user defined data class. The basic requirement put on data objects is
that they must be serializable for message transfer by the ROOM Virtual Machine.

2.3.3 Model Execution

In principle, there are two possibilities to execute ROOM models: (a) the model
is accompanied by an interpreter called theROOM virtual machine, which in-
terprets the model; (b) the elements of the model are mapped to their functional
equivalents in the target environment, which usually is a real-time operating sys-
tem. Here, we skip the compilation of ROOM models to a target environment and
briefly touch upon the ROOM virtual machine.

ROOM Virtual Machine

The ROOM Virtual Machine (VM) interprets ROOM model specifications; it is
a hypothetical platform implemented either in hardware or software and executes
ROOM models. The basic relation of a ROOM model specification (the appli-
cation) and the ROOM VM is shown by a ROOM diagram in figure 2.15. The
ROOM VM itself uses basic services (exception, memory and clock services) of
the target environment and provides four services to the application (the top-level
actor class): theframe service(frame) is responsible for maintaining the run-time
structure of actor class incarnations; this includes actor incarnation and destruc-
tion, imports and substitutions; thecommunication service(comm) is (a) respon-
sible to maintain, i.e. insert and delete connections between actor interface com-
ponents (ports, SAPs and SPPs) and (b) takes care of delivering messages via
established connections to destinations; thetiming service(time) is basically an

2.3 A Brief Primer on ROOM 61

interface to realize timeouts; theexception service(excpt) to realize exceptions
(e.g. to raise an incarnation exception).

Application

ROOM Virtual Machine

Target Environment

frame commexcpt time

clockmemoryexceptions

Figure 2.15: Relation of the application, the ROOM VM and the target environ-
ment, see also [SGW94, p.325]

All actor classes referenced by the application top-level actor class make use
of these four services. Since the corresponding SAPs are given by default they
are not made explicit in ROOM diagrams. So, a ROOM actor class has a set of
peer interfaces (ports), it provides services at SPPs, and uses services of a virtual
machine. The actor’s VM is given by its unfulfilled SAPs plus the ROOM VM
SAPs.

Note that the ROOM VM can be specified using ROOM. This circular spec-
ification technique is not an uncommon approach for the design of (modeling)
languages (see e.g. [ASS96] and [OMG01]).

2.3.4 ROOM Tools

There are some few CASE (Computer-Aided Software Engineering) tools avail-
able that support the creation and execution of ROOM models. Two of them (Ra-
tional Rose RealTime and trice) are commercially available; another one, JRe-
alTime, spurred around for some time in the World Wide Web (WWW) but is
not available anymore. A forth one, PyROOM, has been developed for research
purposes; its successor PyROOM++ is used in this work.

Rational Rose RT

The authoritative ROOM tool, ObjecTime Developer [Obj98], is a full implemen-
tation of ROOM as described in the ROOM book; it is the result of over 120
man-years of research and development since 1986 into the use of executable,

62 Foundations

object-oriented models for producing large-scale embedded systems [Bra96]. Ob-
jecTime, a Canadian company, was bought by Rational Inc. (now owned by IBM)
in the late nineties. The tool ObjecTime Developer has been integrated in Ratio-
nal’s product line and is now sold under the name Rational Rose RealTime.13 It
has been slightly adapted to the UML look-and-feel and extended by some few
UML features like use cases. There are some activities ongoing, mainly driven by
Rational, to incorporate the ROOM language in the forthcoming UML 2.0. Ratio-
nal Rose RT supports common languages like C, C++, Ada, and Java and a variety
of real-time operating systems. The use of the tool requires extensive training and
practice until it can be used productively.

Trice

Trice is a remake of ObjecTime Developer developed by protos GmbH, a ger-
man company located in Munich.14 Trice supports a subset of ROOM (there are
currently no SAPs/SPPs supported) and targets for a market niche in the embed-
ded systems area. Thus, there is some focus on optimized run-time behavior for
specialized real-time operating systems. Due to its limited feature set, trice is in-
tuitively to use and quick to learn.

JRealTime

JRealTime by Dolbec Consulting is another re-implementation of ROOM. It sup-
ports only very basic structure language conceptions of ROOM (actors, ports, and
bindings), is written in Java and accepts Java as an action language only. The tool
binary was available for free download in the year 2000; the tool and its home
page has disappeared from the web ever since. Since the tool also has had some
severe bugs it cannot be considered as a serious ROOM implementation; it has
been listed for completeness only.

PyROOM

PyROOM is the author’s implementation of ROOM in Python [Lut01]. PyROOM
has been developed as a research prototype to implement and test ROOM lan-
guage extensions. Neither Rational Rose RealTime nor Trice are extensible in
that respect, which was the main show stopper to use them in the E-CARES re-
search project. PyROOM has no graphical user interface, the actor behavior has
to be completely specified as a Python program, and it supports ROOM struc-
tural elements just to the extend needed for an early prototype. In addition to that

13For more information seehttp://www.rational.com .
14Seehttp://www.protos.de .

2.3 A Brief Primer on ROOM 63

PyROOM served as a proof of concept that a dynamically typed and interpreted
language enables rapid model prototyping in ROOM, which suits much better the
needs of early design phases as tools such Rational Rose RealTime do. More de-
tails about PyROOM++, the successor of PyROOM developed for this work, can
be found in chapter 6. PyROOM++ fully supports the ROOM language including
the extensions proposed in this work.

64 Foundations

2.4 Mathematical Formalism

To define some key principles in this work we require the precision of a math-
ematical formalism: an algebra. In this section, we give a brief summary on the
formal approach of components and streams as introduced by BROY in [Bro98a,
Bro96, Bro93, Bro98b] before we move on to apply the mathematical conception
on the notion of distribution and layering in subsequent chapters. The notational
and algebraic conventions are based on FOCUS [BS01]. While ROOM and FO-
CUS were not specifically designed for each other, the mapping of simple ROOM
models to FOCUSand vice versa goes without problems.

2.4.1 The Concepts of Streams, Channels, and Components

Informally, a component is typically defined as a “physical encapsulation of re-
lated services according to a published specification” [Bro98a, p.131] (but see
also [BDH+98]). Note that we would like to generalize the quote and speak of
a logical encapsulation of services; the demand of a physical materialization is
an unnecessary constraint. The underlying concept is the idea of a component
which encapsulates a local state or a distributed architecture. Based on this idea,
the mathematical notion of a component is rather straight: it relates streams of
messages (or actions) of input channels to output channels. All required concepts
are defined subsequently.

Untimed StreamAn untimed streamover the setM is a finite or infinite sequence
of elements fromM = {m1, . . . ,mi} with i ∈ N. The elements ofM represent
messages or alternatively actions. For the sake of brevity, we will refer to messages
in the following. To be concrete, let us assume thatM consists of two messages
M = {m1, m2}. We now construct an infinite number of streams out ofM . For
example, the sequences〈m1〉, 〈m2, m1, m1〉, and an infinite series ofm2 messages
〈. . . , m2, . . .〉 represent each valid streams overM . Theempty streamis denoted
by 〈〉.

The set of all finite streams which can be formed over the setM is denoted by
M∗. M∞, on the other hand, denotes the set of all infinite streams overM . Putting
the setsM∗ andM∞ together results in the set of all possible streams overM :

Mω =def M∗ ∪M∞

Timed StreamTo introduce the notion of time, we suppose a discrete time model
with time intervals of equal length. By adding so-calledtime ticks(represented by
a
√

symbol) in a stream, we indicate the progress of time and have introduced the
concept of atimed stream. For example, the transmission ofm1 in the first time
interval prior to the first tick, and the transmission ofm2, m1, andm2 (in exactly

2.4 Mathematical Formalism 65

that order) in the next time interval between the first and the second tick, is noted
as the timed stream〈m1,

√
, m2, m1, m2,

√
〉.

Accordingly to untimed streams, the set of all finite timed streams overM is
denoted byM∗. That means, there is a finite number of ticks in each individual
stream.M∞ denotes the set of all infinite timed streams overM with an infinite
number of ticks. The conjunction defines the whole set of all finite and infinite
timed streams overM :

Mω =def M∗ ∪M∞

Note that a stream represents a history of communication, whileM∗, M∗ etc. rep-
resent a set of communication histories. Whenever we would like to express that
a streams represents a concrete instance of e.g. a timed infinite communication
history, we writes ∈M∞. As we will see, the notion of communication histories
allows us to describe the specification of a component in a very compact manner.

Channel A (directed)channelis an abstract concept of a media that transfers
messages from a sender to a receiver; the transfer is uni-directional, immediate,
faultless and the order of messages is preserved. A channel consists of a chan-
nel name (also calledidentifier) i and an associated channel typeT . The relation
identifier/type is usually denoted asi : T . In general, a typeT is given by a
set of messages, which can be potentially sent over the channel. For example,
the setBit =def {0, 1} may stand for typeT of the channel identifieri. Thus,
type(i) = Bit. Formally, the type assignment is given by the mapping

type : i→ T

The timed streams, s ∈ Bit∞, is a valid history of the space of all infinite “bit-ed”
communication histories transferable over the channeli.

Channel Valuation Specifically, the messages of a streams associated to a chan-
nel identifieri have to be elements of the channel typetype(i), i : type(i), mean-
ing thechannel valuationhas to be fulfilled:

∀j ∈ {1, . . . , #s} : s.j ∈ type(i)

Here,s stands for a stream with all ticks removed froms, #s is the length ofs,
ands.j returns thejth element ofs. The channel valuation can be guaranteed for
an e.g. infinite, timed streams by

s ∈ type(i)∞

Component Seen from a black-box perspective, acomponentcan be specified
by (a) its syntactic interface and (b) its behavior which can be observed at the
interface.

66 Foundations

The syntactic interface is given by a list of channel names, which we refer to
as input/output identifiers (I/O identifiers), and a list of associated channel types.
For any component specificationS, by iS = (i1, . . . , in) andoS = (o1, . . . , om)
(n,m ∈ N) we denote its list of input and output identifiers, respectively.IS =
(I1, . . . , In) andOS = (O1, . . . , Om) are the corresponding lists of their types. For
the association channel identifier to channel type, we also writei1 : I1; . . . ; in : In

(or iS : IS for short) ando1 : O1; . . . ; om : Om (or alternativelyoS : OS). We refer
to (iS : IS � oS : OS) as thesyntactic interfaceof S; (I � O) is a shortcut notation
for that. To state thatS is a specification with the syntactic interface(I � O) we
write

S ∈ (I � O)

and depict it graphically as shown in figure 2.16.

SI O

Figure 2.16: SpecificationS with the syntactic interface(I � O)

For the behavioral description ofS we first need to associate type consistent
streams to each of the channel names. In favor of a compact notation, the I/O
identifiers also designate their respective streams, which represent communication
histories; i.e.iS ∈ I∞

S (abbreviated fori1 ∈ I∞
1 ; . . . ; in ∈ I∞

n) andoS ∈ O∞
S

(for o1 ∈ O∞
1 ; . . . ; om ∈ O∞

m) in case of infinite timed streams. The black-box
behavior of a component can now be described by predicates characterizing a
subset out of all possible I/O histories

RS ⊆ I∞
S ×O∞

S

With BS representing the body of the specificationS, this set of I/O histories forms
a relationRS called theI/O behaviorof S and is defined by

(iS, oS) ∈ RS ⇔ BS

Note that the definition of the I/O behaviorRS is general enough to include non-
deterministic system behavior as well. An input history may have more than a
unique response of output histories. For causality restrictions, [BS01] can be con-
sulted.

Definition 2.1 (Denotation) For any timed elementary specificationS written in
the relational style, we define its denotation, written[[S]], to be the formula

iS ∈ I∞
S ∧ oS ∈ O∞

S ∧BS

ut

2.4 Mathematical Formalism 67

2.4.2 Composition with Mutual Feedback and Behavioral Re-
finement

Some more definitions come in handy to work with arrangements of components.
If some output channels of one component are input channels of another compo-
nent and vice versa, we speak ofmutual feedback.

Definition 2.2 (Composition with Mutual Feedback) Given two specifications
S1 ∈ (I1�O1) andS2 ∈ (I2�O2) with disjoint sets of output identifiersO1∩O2 =
{}, l = (I1 ∩O2) ∪ (I2 ∩O1) stands for a subset of channel identifiers ofO1 and
O2, which are input toI2 and I1, respectively. The same typeL is assumed for
the affected internal channel identifiers inl. Composition with mutual feedback
S1 ⊗ S2 is then defined as

[[S1 ⊗ S2]] =def ∃l ∈ L∞ : [[S1]] ∧ [[S2]]

ut

Behavioral refinementallows us to add step by step properties to a specifica-
tion, while it is guaranteed that any I/O history of the refined specification (the
more concrete specification) is also an I/O history of the given specification (the
more abstract one).

Definition 2.3 (Behavioral Refinement)LetS1 andS2 be specifications with the
same syntactic interface. The relation of behavioral refinement is defined by
the equivalence

(S1 S2)⇔ ([[S2]]⇒ [[S1]])

ut

Composition with mutual feedback is modular with respect to behavioral re-
finement.

Composition with feedback is powerful enough to express all kinds of com-
munication connections between components provided the channels of the com-
ponents are consistently named. In many applications we want to connect only a
subset of the input and output channels of one component with those of another
one. To do that we use the notion of aconnector.

Definition 2.4 (Connector) Let S1 ∈ (I1 � O1) and S2 ∈ (I2 � O2) be given
components. AconnectorC for S1 andS2 is a component in(I ′

1 ∪ I ′
2 � O′

1 ∪ O′
2)

whereI ′
1 ⊆ I1, I ′

2 ⊆ I2, O′
1 ⊆ O1, O′

2 ⊆ O2. Its composition is defined by

∃ I ′
1, I

′
2, O

′
1, O

′
2 : [[S1]] ∧ [[C]] ∧ [[S2]]

68 Foundations

and we then write
S1 ← C→ S2

ut

For simplicity we assume here and in the following that all channels are named
in a way such that there are no name conflicts.

2.5 Summary 69

2.5 Summary

When we looked upon the reference models of OSI and TCP/IP, we saw that
stacking protocols of layers of communication is the combining mechanism that
underlies OSI and TCP/IP. While the number of protocols may vary and their role
in the stack may differ, they share the basic design principle. We noted an biased
view determined by an implementation perspective that emphases vertical com-
munication over horizontal communication. We derived an unbiased, harmonized
set of concepts for both models:

2 Horizontal or intra-layer communication goes viaconnection endpoints; the
communication relation may beconnectionlessor connection-oriented.

2 The communication relation is specified in form of a(communication) pro-
tocol. Sometimes we will refer to communication protocol messages as Pro-
tocol Data Units (PDUs).

2 Vertical or inter-layer communication goes via(service) interfaces, also
calledservice access points.

2 The service relation is specified in form of aservice protocol, often also by
means ofservice primitives. We will also refer to individual service protocol
messages as Service Data Units (SDUs).

Together with an investigation on the general structure of real-time systems
we concluded that our modeling approach spans along three principles of design:

2 distribution

2 layering

2 types of communication

First is the notion ofdistribution: If two entities are remote to each other but
require collaboration, they need to bridge the separation by communication. A
precise definition and a thorough discussion of its implications are subject of chap-
ter 4. Next islayering: Layering concerns the realization of a remote communica-
tion by the services offered by another set of distributed entities. We will provide
a definition of layering and a detailed discussion of it in chapter 5. Finally, the
type of communicationis related to who has a Controlled Domain Model (CDM)
of whom. We will deepen this issue in chapter 3.

The treatment of real-time systems also motivated basic language concepts,
which we manifested with the introduction of ROOM. ROOM is based on the no-
tion of an actor that can be composed of other actors and communication bindings.

70 Foundations

Besides direct peer communication, ROOM also supports layered communica-
tion. The investigations in the next chapters will unveil to which extend ROOM’s
language concepts are appropriate for modeling communication systems or not.
Possible language extensions are discussed in the following chapters and are sum-
marized in chapter 6.

For the purpose of formal definitions we introduced an algebra, whose building
blocks are streams, channels and components; they are close to the concepts in
ROOM.

Now, we are equipped with a set of tools that help us master the challenge of
the next chapters.

Chapter 3

Types of Communication

This chapter’s postulate is that the aspect of control is a key principle underlying
the design of telecommunication architectures. Control helps us determine types
of communication relations and has an important consequence on modeling such
relations.

In section 3.1 we explain why the commonly used distinction in client/server
and peer-to-peer communication models is not satisfying. The aspect of control
is a better way of distinguishing roles and communication types. So, what is con-
trol? Which side in a communication relation controls whom? What are the im-
plications of that? Answers on these questions are given in section 3.2; there, we
will identify three types of communication and propose a notational extension to
ROOM. Based on the insights gained, consequences of this classification are stud-
ied on services provided in a telecommunication system and exemplified on some
“real” protocols: section 3.3 covers communication services and section 3.4 cov-
ers resource control services. As a result, a first set of elementary patterns for our
architecture modeling approach is summarized in section 3.5.

72 Types of Communication

3.1 Problems with the Client-Server and the Peer-
to-Peer Communication Model

Opening a textbook about distributed computing, one is soon confronted with the
client-server model and client-server architectures. The client-server model is a
natural consequence of the revolution that moved us away from centralized sys-
tems (or single processor systems) to distributed computers connected by a net-
work. A client is a process that requests a service from aserver(another process
implementing the service, e.g. a database service) by sending it a request and sub-
sequently waiting for the server’s reply (see [TvS02, p.42f.] and [Tay98]). This
interaction is also known asrequest-reply behavior. Client-server architectures
suggest a physical organization of client-server applications, they are calledmulti-
tiered architectures[TvS02]. If there are only two kinds of machines, one speaks
of a two-tiered architecture. For example, one machine hosts the user interface,
the other the application including the database. In athree-tiered architecture, the
three application parts are distributed over three hosts. The user interface acts as
a client on one machine, the database as a server on another machine, and the ap-
plication resides in the middle on a third machine, acting as a server towards the
user interface and as a client towards the database.

The problem with the client-server model is that it usually only addresses the
application level. However, complex communication systems as we discuss them
are organized on many levels, the application level is just one of them. Does it
make sense to use the terminology “client/server” on other levels as well? We
doubt it – at least, it is not that simple anymore. We already saw in chapter 2
that there is an alternative to the request-reply behavior: it is theindicate-response
behavior. In [Mut01] we find even some more categories of behavior. None of
them matches to the simple client-server model anymore.

Besides that, even when we accept the request-reply behavior for a moment,
we may feel uncomfortable with the client-server model. There is a difference: a
client requesting the time from a server and a client requesting an alarm service.
In the former case we may just retrieve a string containing date and time; in the
latter case, we get access to some sort of resource we continue using to set and get
alarms. The client-server model only speaks of aserviceprovided by the server
and does not make a difference between simple operation requests and resource
requests.

During the last years, another communication model gained attention in net-
worked systems, so calledpeer-to-peer distribution[TvS02, p.53]. Such networks
try to eliminate the need of servers as a shared source of services [Ora01]. One
reason for such a model is to avoid hot spots of network load. Servers are natu-
ral sinks of service requests, which focus the network load on few locations and

3.1 Problems with the Client-Server and the Peer-to-Peer Communication Model 73

lines. Peer-to-peer networks tend to balance the traffic much better at the cost of
having a higher traffic overall. Another reason, often regarded as more important,
is a greater degree of anonymity and privacy. Without servers, there are no sin-
gle organizations anymore that run and maintain the server(s) and, in principle,
have access to all the data stored at the server side. On the other hand, in peer-to-
peer networks pieces of information may easily get lost, simply because the peers
holding information are not connected to the network.

The peer-to-peer model is not lesser problematic as a communication model
than the client-server model is. It also targets the application level. What about the
lower levels? Is it meaningful to talk about peer-to-peer communication on lower
levels? Another issue is: Even though there are no distinct permanent servers any-
more that does not mean that two peers cannot temporarily work in a client-server
mode. Most likely we will identify several modes of communication among peers.
In same cases, the communication will clearly follow the request-reply or indicate-
response behavior; in other cases, we may observe who has initiated the commu-
nication but will not identify any specific behavioral pattern besides the fact that
both parties stick to the rules of a communication protocol.

That is a confusing result. Does that mean that the distinction in client-server
and peer-to-peer is worthless? No, it does not. The problem is that an organiza-
tional pattern and roles of communication are subsumed under the same term –
and literature is not clear on that. If centralization of services shapes the structure
of a network, it is reasonable to name the centralized unitserverand the accessing
(remote) entitiesclients. However, the request-reply behavior is an idealization
of that organizational pattern and is often violated in reality. On the other hand,
if decentralization of services shapes a network structure, it is useful to call the
communicating entitiespeers. Temporarily, the peers may establish any form of a
communication relationship.

This chapter’s mission is to investigate different types of communication re-
lationships and to introduce other names than client-server and peer-to-peer for
them; we will reserve these terms for the above mentioned organizational styles.
We will gain clarity from that and use the categorization of communication types
in later chapters. Note that the type of communication is independent of the aspect
of distribution. We will add the dimension of distribution later on in another main
chapter.

74 Types of Communication

3.2 Alignments of Control

The distinction we are going to make is almost a classic:control flowversusdata
flow [DeM78]. We will tackle the problem of control from the ground up (What
is control? Who controls whom?) and make an interesting observation: there is
more than acontrol-orientedanddata-orientedtype of communication. A third
type,protocol-orientedcommunication, is not just a mixture of both, but a type in
its own right. We derive these three types from going through all possible variants
of control: only one side in a communication relationship exerts control, both
sides exert control, or none of them. After that investigation, we turn back to
the telecommunication domain in section 3.3 and section 3.4 and study types of
communication to be found on various interfaces in a telecommunication system.

3.2.1 What is Control?

A simple scenario of a control-oriented communication relationship is depicted
in figure 3.1 in form of a ROOM diagram. It consists of a controlling actor, the
controller, on the left hand side and a controlled actor, thecontrollee, on the right
hand side. The controller and the controllee are connected by two bindings for
communication. The ROOM protocols are defined from the perspective of the
controllee, which is indicated by the “black” ports on the controllee’s side. The
set of valid messages is annotated close to the bindings.

Controllee

train

photoelec.
Barrier

railroad
Network

Controller

t

b

t’

b’

t

b

go
stop

passed

Figure 3.1: A simple controller/controllee scenario

In our simple scenario, the controllee refines to a minimalistic model of a
railroad with the train being the resource under control. In addition to the train,
there is a photoelectric barrier attached to the railroad network that sends out a
passed message as soon as a train passes by. We do not further elaborate details
of the train/network/barrier relation; we just assume that the network is a closed,

3.2 Alignments of Control 75

circled stretch of line, so that the train must pass the photoelectric barrier each
round.

Via the controllee’s portt the train can be set into motion with the messagego
and halted with the messagestop. Since we do not want to work with real world
entities, we use a simple state model of the train, see figure 3.2. The initial state
is OFF. In that state, eventgo lets the train move (move) and changes the state
to ON. The eventstop causes no action, the train remains in stateOFF. If in state
ON, the train halts (halt) and changes to stateOFF if the eventstop occurs. Event
go in stateON is without any effect. In this example, we assume that messages
and events relate to each other in a one-to-one manner as is usually the case in
ROOM. Messagego triggers eventgo and messagestop triggers eventstop.

This is the simplest possible model of a resource. The state space consists of
only two states, which can be represented by a single bit.

ON

OFF

go / move() stop / halt()

top

Figure 3.2: State model of the train resource

In control theory,control is defined as follows: “To control an object means to
influence its behavior so as to achieve a desired goal” [Son98, Chap.1]. A direct
implication of this definition is that the controller needs to have an understanding
of the functioning of the object – at least to the extent that concerns the observable
behavior of the object. Observable behavior refers to (a) feedback and notification
messages sent from the object to its controller, and (b) messages sent from other
objects to the controller that let the controller deduce information about the con-
trolled object. These other objects have to be indirectly or directly related to the
object under control.

Applied on our example: If we as the controlling actor would like to steer the
train, we need to have some sort of representation of the train’s state space and
assume its current state. In chapter 2 (page 45), we reserved the nameControlled
Domain Model (CDM)for such kind of representation. We have to assume the
current state since we cannot know it for sure. For example, the engine might
become overheated and is in danger to break of which we get no direct notice
since we are not equipped with a heat sensor in our model. Without an internal
representation of the train and its assumed state, and without a model of related

76 Types of Communication

objects, the controller cannot meaningful control the train. We have to memorize
that the train currently is, for instance, in stateON (sincego was our last message
we sent), so that we can stop the train at a certain point in time. For example,
because we got an indication by another resource, say the photoelectric barrier,
that the train passed a defined location. If we are not aware about the probable
state of the resource and do not know how we could affect a state change, we
loose the capability of directed impact on the behavior of the resource. Then, we
are not in control of the resource.

Control is thedirectedexertion of influence on the behavior of something or
someone. We call the controlling party thecontroller, the controlled party the
controlleeand the type of communication relationshipcontrol-oriented. Note
that the definition implies that the controller has some sort of a model, aCon-
trolled Domain Model (CDM), of the controllee.

But how can we be sure that it is the controller that controls the controllee and not
vice versa? Are there some deeper semantics of control? In the next subsection
we will cover both questions.

3.2.2 Who controls whom?

The definition of control is clear, but still: If an external observer monitors the
messages exchanged between two communicating parties, can the observer draw
any conclusions on who controls whom? Are there any criteria on which we can
uniquely decide if there is a control-oriented communication relationship or not?
Who is the controller, who the controllee?

Indisputable is the prerequisite that the capability to sent out messages must
be given. Otherwise the basic precondition to exert influence is not given. Though,
the conditions are not as simple as it might look like. In the example it is only the
controller, who sends messages to the train; nonetheless, this is no unique crite-
rion for control. If we would observe the controller sending outgo/stop messages
randomly, there would be an impact on the train for sure, but we would not speak
of directed, meaningful control (which is demanded in the definition): The con-
troller does not seem to know (or does not want to know), what he impacts and
how he impacts it. Even on the appearance of a single, unnecessarygo message in
stateON we would become suspicious and doubt on the capabilities of control of
the controller.

We have to demand a correlation between messages from the controller and
the behavior of the controllee. A message that does neither influence current nor
future behavior of the resource does not change anything; the message is with-
out influence, it is not correlated and herewith superfluous. This contradicts the
understanding of directed control.

3.2 Alignments of Control 77

Let us assume correlation between the controller’s messages and the train’s
behavior and drop the photoelectric barrier for a moment. We will observe the
controller alternately sending outgo/stop messages to the train. Although we do
not know the criteria on which the controller lets the train stop and go (without
the photoelectric barrier and no other feedback, the controller is “blind”), we as an
external observer see that it makes perfect sense. Ago sets the train into motion,
a stop brings it to a halt. In this special case the control-oriented relationship
is unique and without question; unidirectional messages and message/behavior
correlation leave no other option.

The appraisal of the control relationship becomes more difficult, if we take the
feedback of the photoelectric barrier into consideration. Assumed that the con-
troller halts the train as soon as the train passes the photoelectric barrier. The con-
troller lets the train take a rest for some durationt1, which appears to be randomly
chosen, and then activates the train again. Now, who controls whom? Intuitively,
it is the controller who controls the train, but is that correct? Is it not so that the
train after some distance stretched, no matter whether driven fast or slow, induces
the controller to stop it? For an external observer, messagestop appears right after
passed. If stop is an immediated reaction onpassed, is it the train controlling the
contoller?

As a matter of fact, from an external viewpoint we cannot draw a clear conclu-
sion anymore. The relation of cause and effect is not always resolvable. Message
passed is instantly acknowledged bystop, followed by ago after some timet1,
see the sequence chart on the left hand side in figure 3.3. If one exchanges the
names of the messages with a new semantic meaning, i.e. if one changespassed,
stop andgo to randomTime, begin andend, the message sequence tells a com-
pletely different story (see right hand side of figure 3.3). In this new version, the
controllee seems to use a random-time generator. It looks more like that the con-
trollee uses a service of the controller, there is no control relationship anymore in
the sense it has been before. The controllee does not need a CDM of the controller.

go

passed

stop

go

t0

t1

end

randomTime

begin

end

Figure 3.3: Sequence diagrams of the message exchange between controller and
controllee

78 Types of Communication

The lesson to learn is that, in general, control-oriented communication cannot
be deduced by an external observer. In other works, black-box specifications hide
the aspect of control. Without any knowledge about the interna of an actor it is
often impossible to say whether the actor can or does exert directed control. For
control, the actor needs to have an internal representation, a Controlled Domain
Model (CDM), of the environment that is specified by the corresponding ports.
The controllee, on the other hand, does not need to have any representation of the
controller. The knowledge, whether an actor maintains a CDM or not, requires a
grey box specification style. We need to know some details of the actor’s imple-
mentation in order to exhibit the fact of control.

Equipped with this basic insights about the nature of control, we now go
through all possible variants of control-orientation in a communication relation-
ship. Control may be exerted from one party only, from both parties, or none. We
presume static communication relations in the sense that the side of control does
not change over time.

3.2.3 One-Sided Control-Oriented Communication

In one-sided control-orientedcommunication, only one party of a communication
relationship maintains a state model of the opposite side in order to exert control.
The previously discussed railroad model is an example of that type of communi-
cation. The situation is diagrammatically depicted in figure 3.4: the actor on the
left hand side, the controller, has a CDM of the actor on the right hand side, the
controllee. Of course,controller andcontrolleeare role names with regard to a
specific binding.

The controller’s model of the controllee must by no means be a model of the
internals of the controllee. It is (a) a question to which extend the controller has
precise or assumed knowledge about the controllee’s behavior and state, and (b) a
matter of viewpoint: the controller often sees via its ports just a fraction of the
whole that makes up the controllee. We call an actor’s model of its implementation
aDomain Model (DM)as is shown in figure 3.4, of which the CDM is a viewpoint
of. We can also see from figure 3.4 that the domain model may include other
CDMs based on other communication relationships. Hence, CDMs are viewpoints
on other DMs. Viewpoint modeling is a result of control-oriented communication
– and is a very powerful abstraction technique. A hierarchy of control-oriented
communication relations can be used to combine CDMs, to abstract them to new
DMs and to provide higher-level services.

From a specification point of view it is sufficient to specify the CDMs only. An
actor’s DM, a model of its implementation so to speak, is determined by the set of
its own CDMs and the CDMs addressed as expectations on it via control-oriented
communication relations. From a practical standpoint, selected DMs might be

3.2 Alignments of Control 79

DM

CDM

CDMCDM

Figure 3.4: One-sided control-oriented communication

specified prior to the CDMs. Sometimes – and that is experience from practice
–, it is easier to come up with a CDM when one has gained clarity about the DM
the CDM is a viewpoint of.

In any case, the DM is a model of the whole, the CDM a model of a fraction
of the actor’s implementation on the next level of granularity. An actor can be re-
fined and modeled in two different ways:component-orientedor object-oriented.
It is a matter whether one would like to stick to a message-oriented commu-
nication paradigm or switch to a method-oriented communication paradigm. In
ROOM, both styles are supported and can be used in combination. However, while
component-orientation refers to refinement in form of actor references (which is
ROOM’s basic decomposition feature), object-oriented modeling with ROOM’s
data classes is a neglected area. It is even barely scratched in the ROOM book.

The discussion about component-oriented and object-oriented refinement is a
topic of general interest and not specifically tied to control-orientation. However,
we use the railroad scenario to exemplify the two approaches and stress some
implications of control-orientation.

Component-Oriented Modeling

According to our argumentation, the controller needs to have a representation of
the state space of the controllee. The simplest solution to that is to design a finite
state machine for the controller’s behavior component that digests all incoming
messages, remembers the assumed state of the controllee and acts according to
some plan describing the control behavior. Figure 3.5 shows one possible state
model. For simplicity, we do not mind about the strategy that internally triggers
off the next message. Of course, the state model reminds very much of the state
diagram we specified for the train resource (figure 3.2). But, and that is a major
drawback of such a state model, the control behavior and the state space model
of the controllee are interwoven in a single state diagram. If possible, we should
separate concerns.

80 Types of Communication

ON

OFF

next / go passed / stop

top

Figure 3.5: State model of the controller

Alternatively, we could refine the actor’s implementation and, as an option,
outsource parts of the state space to an explicit model of the controlled resource.
Structural refinement of an actor’s implementation is done via actor references
in ROOM. We call this style of modeling the internals of an actorcomponent-
oriented; it is ROOM’s basic feature of decomposition. In figure 3.1 we already
used that way of decomposing the controllee in a train, a photoelectric barrier and
a railroad network. The actor references including their interconnections consti-
tute the Domain Model (DM) of the actor.

A proposal for the controller’s component-oriented domain model is shown in
figure 3.6. It consists of aswitch and adriver using the switch and the information
received from portb’.

Controller

switch

driver

t’

b’

on
off

go
stop

passed

info
state

Figure 3.6: Domain model of the controller, component-oriented

The controller does not have a model of a train, of a photoelectric barrier or
of a railroad network. The controller works just with the limited perception of the
world as it can be perceived via the portst’ andb’. From the perspective of the
controllee theswitch is just an aspect of thetrain, an aspect published via portt.

3.2 Alignments of Control 81

That is what we mean by viewpoint modeling: The controller’s CDM, the switch,
is only a view of the controllee’s DM.

The switch expectson/off messages and converts them tostop andgo mes-
sages. We assume that the switch maintains an own state model based on monitor-
ing the messages it converts. In addition, we added two messages,info andstate,
that enable the driver to query the current state of the switch. This technique is
calledreflection[DM95] and offloads the driver to maintain an own state model
of the resource it controls. With reflection, the driver can also switch to a rule-
based formulation of the control behavior. A rule could be “if messagepassed
has been received and ifswitch is in stateON, then send messageoff”. We could
also add further features to the switch, such as a blocking mode that prevents the
switch to react onon and off messages. This way, the viewpoint modelswitch
of the resourcetrain can be enhanced by features the controlled resource is not
capable to handle.

Instead of reflection, another possibility is to define a synchronization proto-
col between the driver and the switch. This would also support the separation of
control behavior and controlled state representation. More about synchronization
as a technique for state space separation can be found in chapter 6.

Without reflective capabilities of the switch and without synchronization means
with the driver, the driver would have to work with a state model similar to fig-
ure 3.5. In that case, the switch is more of an explication of the conceptional
entities the controller assumes to be on the controllee’s side rather than a repre-
sentation of the controllee’s state space.

All this modeling options for the CDM should make clear one point: there
are many ways to model the CDM; integrated with or separated from the control
behavior, with reflective or synchronized capabilities or without. From an engi-
neering standpoint it is beneficial to have an explicit, discrete model of the CDM,
so that the viewpoint of the entities under control becomes clear. If the CDM can
be used in a reflective or synchronized manner, one can even separate control
behavior and controlled state space tracking. Admittedly, the borderline that sepa-
rates control behavior and the controlled state space is often fuzzy and is partially
an arbitrarily decision of the modeler. Still, the advantage is that such a CDM can
be used as a requirement on the domain model of the controlled actor and that we
can aim for reuse. If designed with reuse in mind, a copy of the controller’s CDM
can be integrated as a component in the DM as well.

Thus, for components that exert control, we can (but must not!) structure our
models in such a way that the distinction in a CDM and remaining parts remains
visible. In figure 3.7 we have diagrammatically depicted such a structural pattern.
The CDM’s are represented by an actor reference each.

From a language design standpoint, the CDM is a consequent enhancement
of the conceptual intent that underlies the notion of a port, or more generally, of

82 Types of Communication

Actor

CDM-A

service

CDM-B

Figure 3.7: Structural pattern for actor that exerts control

an interface. In ROOM, an interface is not only a specification of how an external
user can interact with the actor but also a specification of the assumptions the actor
makes on its environment and, herewith, how it uses the environment. Yet, the
specification level refers to messages and message schemata only. The CDM goes
beyond the message level and adds the dimension of model views. One could think
of moving the CDM on the border of the actor class specification as is indicated
in figure 3.8 and regard it as a new interface type. Now, the CDM specifies the
actor’s view on a world it can control. This is a grey-box specification style of an
actor that exhibits parts of its internal implementation to the outside.

Actor

CDM-A

CDM-B

Figure 3.8: Grey-box specification of an actor

This is one way how one could extend the ROOM language. Since we do
not want to enforce a specific way to design the CDM, we will go for a more
conservative language extension and introduce a notation for control-orientation
in subsection 3.2.6. Nonetheless, we will use this informal style of presenting an
actor in a grey-box style from time to time.

3.2 Alignments of Control 83

Object-Oriented Modeling

If we use data objects as extended state variables, we can also approach the imple-
mentation of an actor from a completely different angle. Data objects are usually
recruited from the language used for detail level action code such as Java or C++.
Data objects can be accessed via the behavior component of the actor. The behav-
ior component mediates between the message-oriented communication level of
ROOM and method-calls of data objects. Message generation, on the other hand,
is offered as a service by the ROOM virtual machine.

Instead to refine the actor in a component-oriented way, the alternative is
to specify the domain model in form of a data class diagram. Data classes and
data objects in ROOM correspond to classes and objects as known from object-
orientation, see e.g. [Mey97].1 Unfortunately, ROOM has not integrated a visual
form of representing class diagrams (like known e.g. in the UML) in the graphical
notation of an actor class. Figure 3.9 suffers from that fact; it uses an UML stylish
notation as a compromise.

Controller

t’

b’

go
stop

passed()

Driver Switch

«use»

info()
on()
off()

«use»

Figure 3.9: Domain model of the controller, object-oriented

Figure 3.9 is a conversion of figure 3.6 to an object-oriented modeling paradigm,
which is based on method-oriented communication. Objects ofDriver andSwitch
have to be instantiated by the behavior component e.g. at initialization time. In-
coming messages likepassed are consumed by the behavior component, the re-
ceiving object is determined and the corresponding method of the receiver is
called. The function of the behavior component is to decode messages and dis-
patch method calls. Here, messagepassed results in a call of methodpassed() of

1If data objects are not used as data to be conveyed in a message (that is where the name “data
object” stems from), they can have methods that operate on the data. Outside the use of messages,
data classes and objects are much better called just “classes” and “objects”.

84 Types of Communication

a Driver object. Once this conversion step has been achieved, the objects can con-
tinue to use a method-oriented style of communication. In the example, aDriver
object can invoke methodson(), off() andinfo() (with state as a return value) of a
Switch object. If aSwitch objects wants to send out a message, it uses the com-
munication service of the ROOM VM to eject ago/stop message at portt’.

Remember that objects in ROOM are passive objects, i.e. the functionality
of these objects is activated only in the context of their actor’s execution thread
[SGW94, p.150].

In general, the same design options apply as we discussed them for component-
oriented refinement of the actor’s domain model. We can target for a clear separa-
tion of the control behavior and the tracking of the controlled state space; we can
use a reflective or a synchronization interface for that.

The advantage of object-oriented modeling is that OO models can be smoothly
translated into an (object-oriented) detail level action language. Actor domain
models and their behavior can be specified e.g. via UML diagrams, which are
much more expressive (think e.g. of associations, multiplicity, stereotypes, inter-
faces etc.) than raw ROOM diagrams ever can be. A drawback is that the conver-
sion of messages to methods is not optimally supported by ROOM:

2 The behavior component of the actor needs to be prepared for object ini-
tialization, message decoding and method dispatching; there is no suitable
infrastructure provided as a service by ROOM.

2 If object a of actorA wants to communicate to objectb of actorB (B is
a direct neighbor ofA) it cannot call a method directly fromb. Objecta
has to send a message fromA to B instead. This is time consuming and
does not take full advantage of direct method-oriented communication but
it preserves the exclusive thread control of actors.

As is often the case, advantages sometimes outweigh disadvantages – some-
times they do not. We will refine models of actor domains and controlled do-
mains, respectively, in either of the styles, component-oriented or object-oriented.
Sometimes the expressiveness of object-oriented modeling is appropriate, espe-
cially when the whole model can be meaningful placed in a single actor’s thread
of control. If architectural reasoning is more important, the decomposition in a
component-oriented fashion is favored.

3.2.4 Two-Sided Control-Oriented Communication

In two-sided control-orientedcommunication, both parties of the communication
relationship maintain a state model of the opposite side in order to exert control
on the other party. The situation is informally visualized in figure 3.10.

3.2 Alignments of Control 85

CDMCDM

Figure 3.10: Two-sided control-oriented communication

What could be an example for two-sided control, which is not simply com-
posed of two one-sided control relations? A very good example is that of a pro-
tocol as we know it in data and telecommunications. Let us take the Transmis-
sion Control Protocol (TCP) [Pos81b] as an example: The protocol messages of
TCP are exchanged by two parties according to precisely defined rendevouzs of
message sequences. Each party tracks the current state of the message exchange,
assumes the state of the opposite side and reacts accordingly. The relation is not
control-oriented in the sense “I want you to do that” but based on collaboration in
the sense of “according to our commonly shared plan of action I do the following
to achieve our common goal; I assume your cooperation”. For TCP, the common
goal is to reliably transfer data from one side to the other under the presumption of
disturbances that might hinder transmission of individual messages and/or corrupt
data.

A typical characteristic of this type of communication is that the CDM is
shared by both parties. This shared CDM is their contract of collaboration and co-
operation, which is state-based; otherwise we would not talk of two-sided, mutual
control. Alternatively, we call this contractprotocoland the type of communica-
tion protocol-oriented.

With this naming convention there is a need to clarify use and understanding
of the word “protocol”. Unfortunately, the term “protocol” is and always has been
overloaded with different meanings. As we agreed upon in chapter 2, aprotocol
describes valid sequences of messages exchanged between endpoints including
rules of message exchange. Although sequence diagrams are a common way to
describe certain exchange scenarios (see e.g. [ITU99c]), a full specification of a
protocol is often easier to describe by means of a state diagram. The point is that
such a protocol specification is just a specification of the externally observable
exchange of messages, which does not disclose matters of control. Let us take a
simple example: We specify a protocol saying that messagea (outgoing) follows
messageb (incoming) and thatb follows a. Who controls whom? Impossible to
say unless we know how both parties make use of the protocol.

Most protocols used in telecommunications add a further dimension: one usu-

86 Types of Communication

ally assumes that the message transfer is not 100% reliable. That requires both
parties in a communication conversion to carefully keep track of their own and
the other party’s assumed state. It is the basis for rules like the following: “On my
messagea my communication partner immediately replies with messageb; this
is our mutually agreed plan of action. Since I have not received a reply for about
20 seconds, I guess that my message got lost. I will try again and resend message
a.”2 This sort of rules make up most of the CDM and help fulfill the protocol spec-
ification (at least to a certain degree of probability). Without such a CDM on both
sides, message loss would either freeze communication (waiting endlessly for the
outstanding reply) or cause violations of the protocol specification (ignoring out-
standing replies).

In addition to message sequences, telecommunication engineers often have
this supervising control behavior in mind when they refer to a communication
protocol. This understanding of a protocol is not quite in alignment with our defi-
nition. However, our investigation on control let us find a precise attributing termi-
nology: Any communication between endpoints can be specified by a protocol re-
gardless of the type of the communication relation. If one-sided control underlies
the communication relation, we call the protocolcontrol-oriented; if two-sided
control underlies the communication relation (as is the case for many telecommu-
nication protocols that must face unreliability, timing issues etc.), we call the pro-
tocol protocol-oriented. Another case we have not yet touched upon, zero-sided
control, calls for the attributedata-oriented. As an alternative, we sometimes say
for shortcontrol protocol, protocol protocol, anddata protocol.

One could argue that one-sided control over an unreliable medium requires
primarily a protocol protocol that hides the control protocol underneath; a case,
which is not uncovered according to our approach. This criticism is absolutely cor-
rect and in fact, telecommunications is much about tunneling one protocol under
the cover of another protocol. Layering is the design principle to mention in that
context, which aims at separating concerns and is the technique to split commu-
nication types and protocols from another. Together with layering, it makes sense
to distinguish communication types in their pure forms. More about layering can
be found in chapter 5.

Note that all remarks about the options how to model a CDM, explicitly or
implicitly, component-oriented or object-oriented, reflective or synchronized, are
still valid for shared CDMs. There is nothing to add here. Since we will discuss
the protocol-oriented style of communication in a telecommunication system in
much more detail in another section, we would like to close the discussion here
and point the reader to section 3.3.

2This is roughly the functioning of the Alternating Bit Protocol (ABP); it was first described
by BARTLETT et al. in [BSW69].

3.2 Alignments of Control 87

3.2.5 Zero-Sided Control-Oriented Communication

If no side in a communication relationship requires a model of the state space
of its communication partner, we say the communication relation iszero-sided
control-oriented. A better term for that is to say that the communication relation
is data-oriented.

If no CDM is needed, the communication follows simple patterns of inter-
action. An example might be the request to multiply the numbers provided in
a message and return the result to the caller. One might argue that keeping the
callee busy with number crunching is also a way to exert control. That is undoubt-
edly true, but the point is if this is the caller’s intention – and that is something
we can barely determine from an external standpoint. Again, we need grey-box
knowledge of the caller. We need to look inside that part of the caller’s model
that unveils its motivation of using the callee’s multiply service. If we see that the
caller has a semantic state of “keep callee busy”, we know that the communication
interface has been misused and transformed into control-oriented communication
by the caller. While this seems to be an odd case, this sort of misuse is sometimes
intentionally applied to attack computers and offload them. One well-known ex-
ample are Denial of Service (DoS) attacks. The goal is to cripple the target of
attack by an exhaustive number of service requests.

Another example of data-oriented communication is the protocol of the photo-
electric barrier of the railroad model, see figure 3.1. The photoelectric barrier only
notifies the controller about the event that somebody or something has passed it.
For control, the barrier lacks a state space representation of the controller.

If there is a need to classify data-oriented communication, we can attribute it
with the category of behavior applied. We stick to the naming convention scheme
of OSI primitives. Requesting a multiplication operation is data-oriented commu-
nication viarequest-confirm. The photoelectric barrier messaging apassed only
is data-oriented communication vianotification.

3.2.6 Annotating Communication Types in ROOM

We regard control as an important architectural aspect; that is why control-oriented
communication relationships should be visible in our models. ROOM does not
support a notation for that, nor does any other Architecture Description Language
(ADL) the author is aware of.

We propose the following notation, see figure 3.11: For a port whose actor
exerts control via the protocol specified for this port, we attach a small arrow
directly to the port but inside the actor (to emphasis the grey-box nature of the
control semantics). We call such an annotated portcontrol port. As an option, a
control port may refer in its textual representation to the behavioral component,

88 Types of Communication

the actor references and the classes that specify the CDM. A port whose actor
explicitly does not exert control is crossed. We call such an annotated portdata
port. The notation is optional. Ports given in the conventional notation are not
further specified regarding their control semantics.

a)

b)

c)

Figure 3.11: Communication types: (a) control-oriented, (b) protocol-oriented,
(c) data-oriented

Given the notation for control and data ports, we can easily describe the com-
munication types we discussed previously. One-sided control-oriented communi-
cation (or simply control-oriented communication) has a control port on one side
and a data port on the other side. We advocate to define the protocol from the data
port point of view; consequently, the control port conjugates the protocol. Two-
sided control-oriented communication (protocol-oriented communication) has a
control port on each side of a communication relationship. Zero-sided control-
oriented communication (data-oriented communication) has a data port on both
sides.

The value of the notation can be questioned. If a protocol definition combines
a control-oriented and a data-oriented communication style, the port cannot mean-
ingfully classified. Also the target of control cannot always be precisely derived
from a ROOM diagram. See for example figure 3.12. ActorA seems to have a
control-oriented type of communication with actorB andB seems to have a data-
oriented type of communication with actorC – until we get told that actorB just
relays all messages from left to right and right to left. So, in fact actorA controls
actorC and notB.

The value of the notation is more methodological. First, the notation makes
us aware that all communication relations can be composed of the three types
we identified. Second, we should aim to model systems in such a way that we

3.2 Alignments of Control 89

B CA

Figure 3.12: Example of control-oriented communication via a relay actor

can clearly separate control-oriented communication from protocol-oriented and
data-oriented communication. To achieve this, one can use a powerful modeling
technique like layering, which is the main topic of chapter 5. With layering one
can either refine or abstract communication relations. For example in figure 3.12,
layering could be used to abstract away the relay actor, actorB, so that the target
of control becomes clear.

90 Types of Communication

3.3 Communication Services in Telecommunication
Systems

According to our generalization of the OSI and TCP/IP reference model, we iden-
tified two alignments of communication, horizontal and vertical, and two sorts of
communication services, connection-oriented and connectionless. So far, we saw
that services are a matter of vertical communication: aservice providerprovides
a communication service to aservice user. The impact on horizontal communi-
cation was nebulous, we just learned that horizontal communication is virtual –
whatever that means.

We have to delay the study of the precise notion of virtual horizontal commu-
nication and its relation to vertical communication. Here, we are interested in the
specifics of horizontal and vertical interfaces. How do they look like? How do the
standards describe the interfaces, and how can we model them? Is there anything
we can say about the types of communication?

To be concrete, we will exemplify the investigation of horizontal and vertical
communication on two of the most popular protocols of the Internet: the Trans-
mission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP
provides a connection-oriented communication service, UDP provides a connec-
tionless communication service. Technically speaking, both protocols are proto-
cols of the transport layer. Figure 3.13 visually shows the subject of discussion.
The grey shaded boxes, the providers, are the ones, which are specified by the
standards. For TCP it is RFC 793 [Pos81b], and for UDP it is RFC 768 [Pos80].3

Protocol standards usually describe in very detail the vertical interface towards a
service user, the horizontal interface towards a complementary service provider,
and the coupling of the two interfaces.

TCP
Service

User

TCP
Service
Provider

TCP
Service

User

TCP
Service
Provider

connection-oriented
communication service

UDP
Service

User

UDP
Service
Provider

UDP
Service

User

UDP
Service
Provider

connectionless
communication service

Figure 3.13: Connection-oriented and connectionless communication services ex-
emplified on TCP and UDP

3The standards of the Internet Engineering Task Force (IETF) are called RFCs.

3.3 Communication Services in Telecommunication Systems 91

3.3.1 Connection-Oriented Communication exemplified on TCP

TCP provides a reliable end-to-end byte stream over an unreliable internetwork
[Tan96]. Essentially, TCP provides a connection-oriented communication service,
which has been designed to be robust against many kind of failures.

The TCP RFC specifies all service primitives of TCP as function calls.4 We
listed the set of primitives already in chapter 2, see table 2.2 (page 38). Since
in ROOM we deal with messages between actors, the first challenge is to de-
fine equivalent messages for the function calls. Second, we analyze the consti-
tuting parts of TCP’s service interface, meaning we identify, which part of the
interface specification is control-oriented, which protocol-oriented, which data-
oriented. Since there is a control-oriented aspect, we will then model the CDM in
an object-oriented style. Third is the study of the horizontal interface, the actual
protocol that TCP specifies.

Definition of Service Messages

Placed inside an actor, the interface specified by TCP is not accessible in its native
form. TCP can be accessed via a ROOM port only, which requires us to define a
service protocol i.e. a set of messages for the port. Therefore, we have to redefine
the native TCP interface as specified in the RFC (which is specified in form of
function calls) into an appropriate message-based interface.

The conversion of function calls into messages is straight and almost trivial:
we just take over the function call name as a message name and pack the function
call parameters in a data object for message transfer. If a return value is specified
for a function call, we agree upon the convention to speak of the function call as
therequestand the retrieval of the return value as thereply. We attach a “reply” tag
to the message name, in order to distinguish the direction of flow. Note that the
request/reply pairs of messages require synchronous execution. However, there
may be exceptions from this heuristic. Take theRECEIVE primitive, which does
not trigger areceive message waiting for a reply, but fetches the values, which
have been transmitted by areceive prior to theRECEIVE call. Thes conversion
scheme is shown in table 3.1. Note that we renamed “active”OPEN to CONNECT.
For the sake of brevity, we did not list the parameters.

In general, the modeller may choose any other suitable convention for a con-
version scheme. We recommend to go for name identity or similarity. By default,
ROOM converts any incoming message to an event with the event name being
identical to the message name. The data object that comes with the message is
passed as a parameter to the event. This way, ROOM provides a very cheap and

4The function call style is a characteristic of IETF specifications; ITU specifications prefer the
message style.

92 Types of Communication

Table 3.1: Mapping of TCP service primitives to service messages

Primitive Message

LISTEN listen
listenReply

CONNECT connect
connectReply

SEND send
RECEIVE receive
CLOSE close
STATUS status

statusReply
ABORT abort

easy message/event conversion service. This makes it rather trivial to invoke TCP
services via messages instead of function calls. ROOM’s conversion feature can
also be elegantly used to implement callbacks for event driven applications.

If ROOM’s default message/event conversion behavior is not regarded as ap-
propriate or sufficient, one has to design a converter on top of ROOM’s default
behavior. Depending on the functionality of the converter, this might turn out to
be a challenging task. While simple mappings are easy, the implementation of
generic functions like known e.g. in CLOS (Common Lisp Object-oriented Sys-
tem) [Gra95] is hard to realize. However, the effort might be worth to turn ROOM
into a multiple-dispatched language, because it fosters a much better integration
with low-level protocol message decoding schemes. For the physical and the data
link layer, sometimes even for higher layer protocols, message compression is
commonly used and needs en- and decoding before the message can be inter-
preted. Message encryption may require such a complex converter function, too.
For high-level protocols such as TCP, complex converter functions are rather the
exemption than the casual case.

Identification of Service Communication Types

There are seven primitives altogether. Five primitives are concerned with connec-
tion handling:LISTEN andCONNECT set up a connection,STATUS supervises
the connection, andCLOSE and ABORT shut down the connection. All these
commands are about control. They are instructions targeted towards the service
provider. They enable a user to request a resource, namely a connection, use it,
and release it afterwards. The actual use of the connection is given bySEND and

3.3 Communication Services in Telecommunication Systems 93

RECEIVE. This is a data-oriented type of communication embedded in a control-
oriented context of a connection.

Consequently, we split up the messages in two sets and define two message
schemata: a control-oriented message schema, and a data-oriented message sche-
ma, see table 3.2. This implies that the user and the provider of the resource need
to have a control port and a data port each.

Table 3.2: Service messages of TCP separated according to communication types

Control Message Schema Data Message Schema

listen send
listenReply receive
connect
connectReply
close
status
statusReply
abort

A reader not familiar with telecommunications may wonder about such a sub-
tle distinction. The separation of control and data is manifested in the architecture
design of modern telecommunication systems: systems are sliced in a control and
a user (data) plane (see also the comments in the introduction chapter). So far,
this should come to no surprise. Novel is, that this separation is applied even
on a level of individual interfaces. As will be shown in a later chapter, it is this
distinction, the discrimination of control flow and data flow, that lays the basis
for a correct, unbiased treatment of horizontal communication. As we discussed
previously, horizontal communication is typically subsumed under vertical com-
munication. More on that in chapter 4.

Model the Service CDM

Here, we prefer to develop an object-oriented model of the controlled domain. The
CDM can be re-engineered from analyzing the service primitive specification; the
semantic information is contained in the parameters of the service primitives.

Several primitives in TCP return or use thelocal connection nameas a pa-
rameter. The name is used as an identifier for the connection. This is the typical
function-oriented way of dealing with objects: they can be addressed only via
identifiers inside a function call. In object-orientation, the object can be the con-
tainer of related functions (called methods) and thereby specifies the context of

94 Types of Communication

the functions in which they operate. Here, we can define aConnection object and
attach the following methods to it:listen(), connect(), send(), receive(), close(),
status() andabort(). The methods are just adapted function calls. AConnection
object gets instantiated by the behavior component and is returned as a return
value. Then theConnection object is asked either to set up a connection (con-
nect()) or to wait for the provider’s initiative to actually establish a connection
(listen()). In addition to theConnection object we identified a further object, a
Buffer object. To ease buffer handling, we delegate byte counting and buffer space
reservation to theBuffer class. For the sake of brevity, we do not specify buffer
methods in figure 3.14.

c

d
send,
receive

«use»

Connection
+listen() → address
+connect(address)
+send(buffer,push,urgent)
+receive(buffer) → push,urgent
+close()
+status() → data
+abort()

listen, connect,
close, status,
abort,
connectReply,
listenReply,
statusReply

«singleton»
BehaviorComponent

+getConnection(port)
→ connection

«use»
0..∗

TCPServiceUser

Buffer

0..∗ 1

Figure 3.14: Actor model of a TCP service user, object-oriented

Looking at figure 3.14, the task of aConnection object basically is to pro-
vide an object-oriented interface to users inside the hosting actorTCPServiceUser
and hide message communication. The object functions mostly as a converter and
turns methods calls into appropriate message calls. AConnection object can be
created by the behavior component of the actor (depicted as a singleton class in
the diagram); the parameter required to instantiate a connection is aport num-
ber. This port parameter has nothing to do with a ROOM port; a port number
in TCP is an address to discriminate several TCP users and connections, respec-
tively. A lot of port numbers have been reserved for specific TCP user applications
by the Internet Assigned Number Authority (IANA).5 For example, port num-
ber 80 is the standardized address to discriminate the Hypertext Transfer Protocol

5See http://www.iana.org.

3.3 Communication Services in Telecommunication Systems 95

(HTTP) [FGM+99] as a TCP service user. An in-depth discussion about address-
ing can be found in chapter 4.

TheBehaviorComponent and the actorTCPServiceUser, respectively, can have
zero or moreConnections. EachConnection object uses port,c andd, to control
the connection and to transfer data. To send and receive a byte stream over portd,
a Connection object uses aBuffer object to pass over or to retrieve a sequence of
bytes.

Note that theConnection object is very close to the concept of a socket in-
terface object. See for example the two tiny python scripts listed in chapter 2,
page 39. Users, who prefer sockets as the de facto standard interface for TCP,
may easily wrap theConnection class accordingly.

To recap: Why did we specify a model for the service user and not for the
service provider? On an architecture level we are not primarily concerned about
the implementation of a service. This may become an issue if we would like to
execute our models; usually, a very simplistic implementation that neglects de-
tails and works with optimistic assumptions is sufficient for such a purpose. We
will describe such an simplified version of a TCP service provider in a subsequent
section; so, the service provider model is not out of scope. What counts on an
architecture level is the view we are having of TCP from a user’s standpoint. The
view can be re-engineered from the service protocol as specified in the standard.
If this viewpoint is control-oriented then we agreed on to explicate the CDM and
model it either in a component-oriented or object-oriented fashion. For a TCP ser-
vice user, TCP is reduced to the viewpoint of a connection object – and this is a
very drastic abstraction of TCP. A user is not concerned abouthowTCP actually
realizes the connection towards another party. The user just uses the connection-
oriented communication service provided by TCP and works with the abstraction
of a connection. To exert control, the service user must have some sort of rep-
resentation of the world it controls. The notion of a connection is one possible
“materialization” of the controlled world, it is an interna of the service user actor;
it may be made explicit as we did or it may be implicit and interwoven in the ac-
tor’s domain model. Since we aim for explicitly, we publish that part of the service
user actor and favor a grey-box specification style. If feasible, we draw the “grey
internals” on the actor’s border to highlight that aspects. Figure 3.15 shows our
status quo of modeling the service user and provider part of TCP.

For the sake of a compact notation, the ports used by theConnection class
have been attached directly to it. To indicateConnection class multiplicity, the
“shadow” symbol has been used; the replication factor of portc andd can be set
to one. Remember, this style of a grey-box ROOM actor diagram is informal and
just attempts to visualize the information that is textually specified along with the
control port. Here, the control port points to theConnection class as the CDM.

96 Types of Communication

Connection

TCPServiceUser

TCP
ServiceProvider

c

d

c d

Figure 3.15: Model of the relation TCP service user/service provider

Model the Protocol CDM

The horizontal communication protocol specified by TCP is the main subject of
the standard. Roughly 80% of the standard are an in detail description of “horizon-
tal” messages, its parameters and allowed sequences of message exchange. Since
a reliable byte stream is TCP’s main concern, TCP undertakes quite some efforts
to recognize message loss (messages contain segments of the byte stream), to re-
transmit messages, and to recover from disturbances. This complexity is reflected
in the format of TCP messages, see figure 3.16. TCP does not specify names to
distinguish messages but uses control bits of the flag field (UAPRSF). That is why
we define a generic name for all incoming and outgoing TCP messages in our
ROOM model, sayTCPMessage, and define a data class that specifies the TCP
message format as shown in figure 3.16.

A short description, taken from the standard [Pos81b, p.9 f.],6 gives a rough
overview on the meaning of the fields of a TCP segment for reliable communica-
tion. For more details about the message format, the reader is requested to consult
the RFC.

A stream ofdatasent on a TCP connection is delivered reliably and in
order [from asource port] at the destination [to thedestination port].

6Insertions made by the author are indicated by brackets. Highlighting is also done by the
author.

3.3 Communication Services in Telecommunication Systems 97

+----------------+----------------+
| Source Port |Destination Port|
+----------------+----------------+
| Sequence Number |
+---------------------------------+
| Acknowledgement Number |
+---+-----+------+----------------+
|Off|Rsrvd|UAPRSF| Window |
+---+-----+------+----------------+
| Checksum | Urgent Pointer |
+----------------+-------+--------+
| Options | Padding|
+------------------------+--------+
| data |
+---------------------------------+

Figure 3.16: Format of a TCP segment, see [Pos81b]

[The dataoffsetindicates, where the data begins (since the length of
optionsmay be variable); fieldoptionscontains – among others – the
size of the TCP segment.Padding is used “to ensure that the TCP
header ends and data begins on a 32 bit boundary. The padding is
composed of zeros” [Pos81b, p.19]. Thechecksumfield is used to
recognize segment corruption.]

Transmission is made reliable via the use ofsequence numbersand
acknowledgments. Conceptually, each octet of data is assigned a se-
quence number. The sequence number of the first octet of data in a
segment is transmitted with that segment and is called the segment
sequence number. Segments also carry anacknowledgment number
which is the sequence number of the next expected data octet of trans-
missions in the reverse direction. When the TCP transmits a segment
containing data, it puts a copy on a retransmission queue and starts
a timer; when the acknowledgment for that data is received, the seg-
ment is deleted from the queue. If the acknowledgment is not received
before the timer runs out, the segment is retransmitted.

[. . .]

To govern the flow of data between TCPs, a flow control mechanism
is employed. The receiving TCP reports a“window” to the sending
TCP. This window specifies the number of octets, starting with the ac-
knowledgment number, that the receiving TCP is currently prepared
to receive.

For connection establishment and clearing, TCP uses the control bits to dis-

98 Types of Communication

tinguish phases during the process of setting up and tearing down a connection.
Of interest are thesynchronization bitS(YN), theacknowledgment bitA(CK), the
reset bitR(ST) and thefinish bitF(IN). With theurgent bitU(RG) set, the receiv-
ing user should be notified to do urgent data processing; in that case theurgent
pointerpoints to the last octet of urgent data. Thepush bitP(SH) indicates data in
the TCP segment that must be pushed through to the receiving user.

Looking at how the TCP standard [Pos81b] specifies the protocol unveils a
typical problem: It presents the whole TCP service provider by a single state ma-
chine and does not clearly separate the TCP protocol from its user (or application)
interface. Both are combined, see figure 3.17; it is the result of a white box view.

SYN
RCVD

CLOSED

CLOSING

LISTEN

SYN
SENT

FIN
WAIT 1

FIN
WAIT 2

TIME
WAIT

LAST
ACK

CLOSE
WAIT

CLOSED

ESTAB-
LISHED

LISTEN/- CLOSE/-
SYN/SYN+ACK

SEND/SYNRST/-

CONNECT/SYN

SYN/SYN+ACK
ACK/-

CLOSE/FIN

CLOSE
/FIN

FIN/ACK

ACK/-

FIN/ACK

ACK/-FIN+ACK
/ACK

SYN+ACK
/ACK

FIN/ACK

CLOSE
/FIN

ACK/-
Timeout/-

CLOSE/-

Figure 3.17: The TCP FSM figure is derived from [Tan96, p.532]. The heavy solid
line is the normal path for a client. The heavy dashed line is the normal path for a
server. The light lines are unusual events. User commands are given in bold font.

The figure uses a compact notation and shows both the server FSM (Finite
State Machine) and the client FSM.7 It reads as follows: When a user in his role as
a server submits aLISTEN command, the state changes fromCLOSED to LISTEN.

7Strangely enough, here “client” and “server” denote roles names that indicate theinitiator and
the acceptorof a connection request; it says nothing abouthow the connection is used later on.
Despite our criticism, people have become so much used to this terminology that we will stick to
it.

3.3 Communication Services in Telecommunication Systems 99

If, on the other side, the client user submits aCONNECT, the TCP protocol sends
out a message with the synchronization bitSYN set to one, and the client’s state
changes toSYN SENT. On receipt of the TCP message withSYN equal to one,
the server sends out a TCP message withSYN and ACK (the acknowledgment
bit) set to one and changes to stateSYN RCVD. When the three-way handshake
completes successfully, both parties end up in stateESTABLISHED and are ready
to send and receive data respectively. This short description of figure 3.17 neglects
a lot of details of TCP (e.g. timeouts, which are important to resolve deadlocks
and failures) but is sufficient for the purpose of our discussion. The interested
reader may consult [Tan96] for more information.

The state machine describing TCP is a good showcase of what is typically
understood by the term “protocol” in (tele)communications. It is a specific way of
encoding and packaging information, and the exchange of information is precisely
described by a state machine. It is the plan of action of two parties, it is their
implementation so to speak, that describes how these two parties collaborate in
order to provide a service that allows its users to communicate to each other via the
abstraction of a connection. We called this sort of collaborationprotocol-oriented.
Thus, TCP’s horizontal protocol is aprotocol-oriented protocolaccording to our
terminology. Still, it remains unclear whatsoever horizontal communication is and
how it could be modeled.

One may object that a data-oriented part could be extracted from the protocol
protocol. In stateEstablished, TCP seems to be solely in data transfer mode, out-
side ofEstablished it is in handshake mode to set up or to release the connection.
While this observation is almost true, it is just half the story. During connection
setup or release, data may be still passed along with the control bits. TCP is de-
signed in such a way that data transmission is closely interwoven with control
information.

As mentioned, the state machine describing the TCP protocol (see figure 3.17)
does not accurately separate the protocol part that specifies the mutual control be-
havior on the horizontal interface from the part that concerns the vertical service
interface. There are techniques available that support such a clear distinction as,
for example, described in chapter 6. Since we do not want to overload this sec-
tion with techniques of specification, we assume that such a know-how has been
applied so that we can publish just that fraction of TCP that reflects the CDM
associated with portt, see figure 3.18. The TCP protocol is encapsulated in an
actor,Protocol, and becomes part of the grey-box specification of the TCP service
provider.

100 Types of Communication

Summary

Figure 3.18 summarizes our attempt of modeling a connection-oriented commu-
nication service by just taking into consideration the insights we gained about the
distinction in communication types. We split the vertical interface into a control-
oriented and a data-oriented part and introduced the abstraction of a connection
on the service user side. Horizontally, the interface is protocol-oriented. The TCP
standard describes how the service provided at the vertical interface is realized by
messages sent over the horizontal interface; this description is given by the RFC
in form of a single state machine and accompanying text. Due to the peculiari-
ties regarding the relation of the horizontal interface, we use a dashed line for the
binding of thet ports.

Connection

TCPServiceUser

TCP
Service
Provider

c

d

c d

Connection

TCPServiceUser

TCP
Service

Provider

c

d

cd

“Client” “Server”

TCPMessageProtocol t t Protocol

Figure 3.18: Model of a connection-oriented communication service

Since TCP has been just used as an example, we can take figure 3.18 as a
generic model for provisioning a connection-oriented communication service in
a communication network. Of course, the (implementation) model of the service
provider may look different, the details of theConnection class inside the service
user may vary, but the same arrangement applies.

Note: In the generalized model of a connection-oriented communication service
the horizontal interface can be data-oriented. It depends very much, how the stan-
dard specifies service realization. Ordinarily, the horizontal interface is protocol-
oriented. Regard this note as a hint; we will elaborate on that when we complete
our modeling approach.

3.3 Communication Services in Telecommunication Systems 101

3.3.2 Connectionless Communication exemplified on UDP

The User Datagram Protocol (UDP) provides a communication service to its users
to send messages to other users with a minimum of protocol overhead. UDP is
transaction oriented, i.e. it is connectionless, and delivery and duplicate protection
are not guaranteed [Pos80].

The service interface for connectionless protocols is very simple; it consists
of a send primitive and areceive primitive only. For UDP the service primitive
specification is shown in table 3.3.

Table 3.3: Service primitives of UDP

Primitive Parameters Return Value

SEND destination address, buffer address,
byte count

RECEIVE buffer address, byte count byte count,
source address

If we compare this table with the service primitives of TCP (table 2.2, page 38),
we observe that the connection context has been removed from theSEND / RE-
CEIVE part. Hence, each message to be sent out must be tagged with the address
of the destination the message is targeted to. The receiver, on the other side, gets
the sender’s address together with the data received. Without the source address,
the receiver might not reply to the originator of the message.

Seen from this perspective, the notion of a connection breaks down to an ad-
dressing scheme. Before sending or receiving data it is agreed upon to associate
a source/destination address pair with another identifier, calledlocal connection
namein table 2.2. AnySEND or RECEIVE requires now the connection identifier
as an implicit addressing mechanism.

This is a very abstract interpretation of a connection; it does not imply any sort
of a line media, physical or virtual, that interconnects communicating parties for
message transfer. But we would like to point out that this abstract understanding of
a connection is a valid interpretation from a service user standpoint. It is the user’s
viewpoint (the user’s CDM) of the service provider; it is a completely different
storyhowthe service provider actually implements the service.

Definition of Service Messages

The conversion of the service primitives to service messages is straight and comes
without further comments, see table 3.4. Since UDP looks like TCP without the

102 Types of Communication

connection context, it is an easy exercise. Again, for the sake of brevity, parame-
ters have been omitted in table 3.4.

Table 3.4: Mapping of UDP service primitives to service messages

Primitive Message

SEND send
RECEIVE receive

Identification of Service Communication Type

Besides the different addressing mechanisms applied, there is no difference be-
tween theSEND / RECEIVE primitives of TCP and theSEND / RECEIVE primi-
tives of UDP. Consistently, the vertical communication type is data-oriented. As a
consequence thereof, there is no CDM to model.SEND andRECEIVE are simple
operations that submit and fetch data, respectively. There is no aspect of control
on a connectionless service interface.

We may provide a method-like interface instead of a message-based interface
inside the service user actor as we did for TCP. Here, we leave the decision up
to the modeller and do not make any decisions on that. The design of the user
internals are of secondary interest, since due to a lack of a CDM there is no need
of a grey-box specification style and publish internals to the outside.

Model the Protocol

Connectionless communication services that guarantee neither reliability nor de-
livery are usually not in need of a protocol-oriented communication type on the
horizontal interface. The data handed over via the vertical interface is packaged or
extracted from the UDP message format, see figure 3.19, and the UDP messages
are just sent out or received on the horizontal interface. That is data-oriented com-
munication.

In its header, each user datagram contains thesource portand thedestination
port, the lengthof the message and achecksum.Following the header, bytes of
data fill up the datagram.

Analogously to TCP, we define a generic name for all incoming and outgoing
UDP messages, sayUDPMessage, and define a data class that specifies the UDP
message format as shown in figure 3.19.

3.3 Communication Services in Telecommunication Systems 103

+----------------+----------------+
| Source Port |Destination Port|
+----------------+----------------+
| Length | Checksum |
+----------------+-------+--------+
| data |
+---------------------------------+

Figure 3.19: Format of a UDP datagram, see [Pos80]

Summary

Figure 3.20 summarizes our attempt of modeling a connectionless communica-
tion service by just taking into consideration the insights we gained about the
distinction in communication types. The result is remarkable simple compared to
connection-oriented services. The vertical interface is of type data-oriented, the
horizontal interface as well. As a consequence, there are no CDM’s to model: nei-
ther the user has to have a viewpoint model of the service provider, nor is there
any protocol FSM to model. The relation between the vertical and the horizontal
interface from a provider’s standpoint is plain and straight, a simple mapping of
messages suffices. This simplicity is also reflected in the size of the respective
standards: UDP is a document of three(!) pages, TCP sums up to 85 pages.

UDPServiceUser

UDP
ServiceProvider

d

d

UDPServiceUser

UDP
ServiceProvider

d

d

u uUDPMessage

Figure 3.20: Model of a connectionless communication service

Since UDP has been just used as an example, we can take figure 3.20 as a
generic model for provisioning a connectionless communication service in a com-
munication network. The same note like for TCP applies.

Note: In principle, the horizontal interface of a connectionless communication
service can be protocol-oriented as well. It is an issue of how the standard specifies

104 Types of Communication

service realization. Ordinarily, the horizontal interface is data-oriented. Regard
this note as a hint; we will elaborate on that when we complete our modeling
approach.

3.4 Resource Control in Telecommunication Systems 105

3.4 Resource Control in Telecommunication Systems

A field that is largely ignored in computer networks is the issue of resource con-
trol. The termresourcedoes not only include physical resources such as adap-
tors, switchboards, echo cancellers, codec converters etc. but also resources im-
plemented in software. On a software level, resources can be combined, added
by some functionality and offer value added services that make a user believe to
access a “new” kind of resource that is more than the sum of its physical compo-
nents. Take for example an alarm clock and a radio, add a composing layer, and
you will get a clock radio. The new feature, that the radio turns on at a certain
alarm time, is more than any of the resources could provide in isolation.

Most likely, the subject of resource control has been skipped because resources
and their control are either regarded as an internal matter of a device or a host, for
which no networking is needed, or they are regarded as a matter of the application
level, which does not seem worth special mentioning. As a matter of fact, the most
popular textbooks on computer networks and distributed systems do not touch
upon the subject at all (see e.g. [Tan03]).

We see a need to pay some special attention to resource control. As was men-
tioned in the introduction chapter, telecommunication systems are sliced in a con-
trol and a user plane; basically, it is the control plane that controls the user plane.
In most cases this control relationship breaks down to resource control. The con-
trol plane controls resources of the user plane. While the control plane and the
user plane may operate as largely independent networks, the combining spots are
locations of resource control. Usually, the node hosting the resource brings to-
gether the control and the user plane. Traditionally, the aspect of resource control
has been a local, internal issue. Often, inside such a node, the border between con-
trolling and controlled behavior is blurred and not absolutely separable. At best,
the designers defined an proprietary Application Programming Interface (API) for
the resource.

One of the intentions of UMTS has been to clearly separate the control and
the user plane and to avoid the blur of the control/user plane inside nodes hosting
resources; this is the so-calledarchitectural splitintroduced with UMTS. As a re-
sult of that, the telecommunication sector of the International Telecommunication
Union (ITU-T) defined a protocol, a control-oriented protocol in our terminology,
that describes how a user can control a switching centre. This protocol is called
Media Gateway Control Protocol (MGCP), it is specified in H.248 [ITU00] and
has been taken over as a standard by IETF as well, see RFC 3015 [CGH+00]. With
the definition of a protocol and the separation in a resource user and a resource
provider all prerequisites are given to aim for physical separation of both roles. In
the UMTS architecture, these two roles are logically fulfilled by the Media Gate-
way Controller (MGC) and the Media Gateway (MG). It is up to a manufacturer

106 Types of Communication

to produce two individual nodes or a single combined node. Important is that the
distinction has been made logically.

Now we start to have a much better picture of the SIGTRAN functional model,
the case study introduced in chapter 1. The MG hosts a resource, basically a
switching centre, that is part of the user plane and is controlled by the MGC,
with the controller being part of the control plane. Before we value the notion of
planes in architecture network models, we first look closer into MGCP and deduce
a Controlled Domain Model (CDM) for the controller.

The MGCP is just one example that control-oriented protocols may have a net-
working dimension associated to them. The alignment of the communication in-
terface is “vertical”, similar to connection-oriented communication. Connection-
oriented communication is, in that sense, just a special case of resource control
with the connection being the resource.

3.4.1 Resource Control exemplified on MGCP

Some terminology first, directly from the standard: “The Media Gateway (MG)
converts media provided in one type of network to the format required in an-
other type of network. For example, a MG could terminate bearer channels from a
switched circuit network ([. . .]) and media streams from a packet network ([. . .]).
[. . .] The Media Gateway Controller (MGC) controls the parts of the call state
that pertain to connection control for media channels in a MG” [ITU00, p.6]. The
Media Gateway Control Protocol (MGCP) is the convention used by the MGC to
exert control on the MG.

Model the Resource CDM

Since the protocol and its message format are given by the standard, and since the
communication type is almost by definition control-oriented, we go straight to the
task of developing the viewpoint model (the CDM) for the MGC. In this special
case, we also use the termresource modelfor the CDM.

The two key abstractions the MGC relies to have control of, are the notion of
a contextand the notion of atermination, see figure 3.21. ATermination is the
source and/or the sink of one or more media streams.Properties andstatistics of
the termination, including the demand to notify the MGC on certainevents, are
specified via so-called descriptors, abbreviated asdescs andDesc in the ROOM
diagram. The standard defines some default descriptors. For example, theTer-
minationState descriptor delivers a simple state model of the termination;8 the
Events descriptor defines events to be detected by the MG and to be reported to

8A termination can be in one of the following states:test, in serviceandout of service.

3.4 Resource Control in Telecommunication Systems 107

the MGC; theAudit descriptor identifies the information desired inaudit com-
mands, and so on and so forth. A lot of information about the actual resource is
delivered via descriptors. Descriptors are a means (a) to dynamically configure
the MG and (b) to enable proprietary resources. By intention, the resource model
is generic and highly flexible.

«singleton»
BehaviorComponent

Context

topology
priority
emergencyCallIndicator

+add(t [,descs])
+modify(t [,descs])
+subtract(t [,auditDesc])
+move(t [,descs])
+auditValue(t, auditDesc)
+auditCapabilities(t, auditDesc)
+notify(t, eventDesc, [errorDesc])
+serviceChange(t, serviceChangeDesc)

RootTermination

properties
events
statistics

Termination

signals

1..∗

1..∗

«use»

transactionRequest transactionReply

MGC

Figure 3.21: Model of the Media Gateway Controller

Terminations can be assembled to a pool of terminations, calledContext, and
interconnected in a point-to-point or multi-point fashion, which determines the
topology of a context. There are commands toadd() andsubtract() termination
to/from a context and tomove() terminations from one context to another. Fur-
ther commands enable the MGC tomodify() the properties of the termination, to
audit terminations (auditValue() andauditCapabilities()), and to request for noti-
fication in case of specific events (notify()) and in case of service state changes
(serviceChange). Some of the commands have to be provided with a descriptor,
for others it is optional.

There is always at least a single context, theroot context, which contains all
terminations that are not associated to some other context. If a command must
refer to the entire MG and address all terminations, it uses theRootTermination
for that.

The commands that can be issued viaContext are encoded either binary or tex-
tually, they are packaged in groups of context and submitted in a so-calledtrans-
actionRequest to the MG. Any information that is to be reported from the MG to
the MGC is also grouped by context and sent to the MGC in atransactionReply.
The format of the replies follows the conventions of one or more descriptors, e.g.
an error descriptor. Note that thetransactionReply is processed by the behavior

108 Types of Communication

component first and – if designed like that – handed over to aContext object.
The design of the resource model can be deduced from studying the protocol

messages of MGCP. Very often, the basic conceptions are already introduced and
explained in the standard. Another resource that may be helpful in re-engineering
the resource model from the protocol specification is to consult the Management
Information Base (MIB), provided that it exists. The MIB is used for network
management purposes. For MGCP a draft version of its MIB is available, see
[HABP02].

Summary

Figure 3.22 shows the complete model of the resource user, the MGC, and the
resource provider, the MG. Of course, there is more to the MGC and the MG than
is shown in the diagram, especially there are some more ROOM ports to be shown
that process control information on the MGC level and user payload data on the
MG level. Figure 3.22 shows only the fraction that is of relevance for the aspects
we are interested here.

MGC

MG

r

Context

Termination
0..∗

r

Figure 3.22: Model of a resource control relation

The resource model is exhibited via the informal technique we used before.
Drawing classTermination inside classContext is another way of visualizing con-
tainment in UML.

Figure 3.22 and the introductory railroad example have very much in common
since both represent control-oriented communication in its plain form. There is

3.4 Resource Control in Telecommunication Systems 109

a clear relationship of who controls whom. In both cases, the resource model is
essential in order to gain and exert control. The resource provider has no state
space representation of the controller. The events the MG is instructed to notify
the MGC about correspond to the signals emitted by the photoelectric barrier.
MGCP is just a telecommunication specific example of a control protocol.

110 Types of Communication

3.5 Summary

In this chapter we investigated thoroughly the aspect of control in communication
systems. We defined control as the directed exertion of influence on the behavior
of some other entity. Having control implies to have a state space representation of
the controllee. We called this representation a Controlled Domain Model (CDM),
which is a viewpoint of the Domain Model (DM) of the controllee. It is the CDM
that we try to make explicit in our models. However, it might be difficult to clearly
separate control behavior from the state space tracking of the CDM. Nonetheless,
it is even worthwhile to explicate the conceptual entities under control; it makes
models more expressive and understandable.

We proposed an optional notational extension to ROOM in order to classify
ROOM ports as either control ports or data ports. Control ports are indicated by
an small arrow attached to them, data ports are “crossed” ports. Control ports may
maintain pointers to that part of the actor’s implementation model, which realizes
the CDM. Informally, we bring this grey-box kind of information to the reader’s
notice by drawing the corresponding actor references or classes on the actor’s
border, see for example figure 3.23.

a)

b)

c)

Figure 3.23: Summary of communication types: (a) control-oriented, (b) protocol-
oriented, and (c) data-oriented

Given this notation, figure 3.23 summarizes all three identified communication
types: (a) one-sided control, (b) two-sided control, and (c) zero-sided control. We
agreed on the names control-oriented, protocol-oriented and data-oriented as char-
acterizing attributes. We also mentioned that the notation is foremost of method-
ological value, since the port types do not necessarily unveil the underlying com-
munication type (e.g. in case of relaying actors).

3.5 Summary 111

We then studied which kind of communication types there are in a telecommu-
nication system. Basically, on a coarse granular level, a telecommunication system
is composed of communication services (connection-oriented and connectionless)
and resource control services. We exemplified the study on a representative selec-
tion of three protocols and looked at how to model the vertical and the horizon-
tal interface, respectively. The protocols we examined are TCP for connection-
oriented communication, UDP for connectionless communication, and MGCP for
resource control.

If we look at the interfaces individually, neglect their coupling, and generalize
the example protocols, we get a much better picture of the constituting commu-
nication types per interface type. Figure 3.24 summarizes our findings for the
vertical interface. The open box symbol for the actors indicates that there may be
other aspects (like other interfaces and related CDMs), which we do not show.

Connection

Service
User

Service
Provider

Service
User

Service
Provider

ResourceModel

Service
User

Service
Provider

a) b) c)

Figure 3.24: Vertical communication types for (a) connection-oriented, (b) con-
nectionless, and (c) resource services

Figure 3.24 a) represents a connection-oriented communication service pro-
vided by a service provider to a service user. The service user works with the ab-
straction of one or more connections. We can clearly separate the aspect of control
to set up, supervise and release a connection, and the actual transfer of data. This
separation is reflected on the vertical interface, since it is split in two parts. One
part is of type control-oriented, the other of type data-oriented. For a connection-
less communication service, figure 3.24 b) shows that the vertical interface is of
data-oriented communication type only. Therefore, no Controlled Domain Model
(CDM) is required on the service user side. For resource control, figure 3.24 c),
the service user maintains a resource model and has a control-oriented type of
communication towards the service provider.

112 Types of Communication

For the horizontal interface, figure 3.25 summarizes our findings. We are still
not clear on what the horizontal interface really is and indicate that by a dashed
binding, but the distinction in communication types is nonetheless possible.

Service
Provider

Service
Provider

Service
Provider

Service
ProviderProtocol Protocol

a)

b)

Figure 3.25: Horizontal communication types for (a) a protocol-oriented and (b) a
data-oriented protocol

Figure 3.25 a) shows a protocol-oriented communication type. Both sides of
the communication relation exert control in order to deal with the deficiencies of
message transmission over the (dashed) binding. Consequently, both sides main-
tain a state model; this model is what telecommunication system engineers often
refer to when they use the term “protocol”. We agreed on to call such a protocol a
protocol-oriented protocol, or protocol protocol for short. Figure 3.25 b) shows an
alternative, a data-oriented communication type. Messages are just released to the
horizontal interface, no care is taken if a message reaches its destination or not.

It is interesting to note that the vertical interface is either purely control-
oriented or purely data-oriented or a combination thereof; but it is not protocol-
oriented. The horizontal interface, on the opposite, is either protocol-oriented or
data-oriented but not control-oriented. If this obersation scheme holds valid, we
have found a first criterion that semantically classifies horizontal and vertical
communication by an excluding property: a vertical interface is never protocol-
oriented, a horizontal interface is never control-oriented.

Our modeling approach starts to take shape. The protocols mentioned in the
case study (chapter 1) fit all to the classification scheme for vertical and horizontal
interfaces. SCTP, for example, is a protocol offering connection-oriented commu-
nication service and is very similar to TCP. IP and MTP3 offer a connectionless
communication service very much the same as UDP does.

The next chapter is about the aspect of distribution, which is primarily a matter
of horizontal communication. In that chapter we will eventually reveal what the

3.5 Summary 113

dashed binding in previous figures is all about.

114 Types of Communication

Chapter 4

Distribution

The most obvious characteristic of a communication system is its aspect of distri-
bution. If two or more processes, users or – more abstractly – entities are physi-
cally spread in space but want to collaborate, they somehow have to bridge spatial
distribution and establish communication. This chapter concerns only the aspect
of distribution and how to model services that enable entities to communicate.
That includes the important area of how to treat addressing.

In section 4.1, we formally discuss the aspect of distribution with the alge-
braic toolset provided in chapter 2. We then go on and transfer our insights to the
modeling language ROOM in section 4.2. In section 4.3 we thoroughly discuss
how to model distribution and communication networks and exemplify it on TCP,
UDP and JavaSpaces. The notion of addressing, an often neglected area in system
architecture modeling, is subject of section 4.4. In section 4.5 we summarize and
generalize our considerations and derive the next set of elementary patterns for
our modeling approach.

116 Distribution

4.1 What is Distribution?

Definitions on distribution to be found in literature suffer preciseness on the one
hand and generality on the other hand. We will mathematically define the notion
of distribution, which satisfies the demand for precision and generality, before we
move on to think about the capability of ROOM to model distribution.

4.1.1 Definitions in Literature

How do we definedistribution? In literature there is no common agreement on a
suitable definition. For example, WU defines distribution as follows [Wu98, p.12]:

A distributed system is one that looks like an ordinary system to its
users, but runs on a set of autonomous processing elements (PEs)
where each PE has a separate physical memory space and the mes-
sage transmission delay is not negligible. There is close cooperation
among these PEs.

According to his definition WU concludes that computer networks are not consid-
ered distributed systems. WU argues that processes at different locations or sites
do not work cooperatively. Say, in a network of independently working PCs (Per-
sonal Computers) the network is only used to exchange certain information such
as email. We do not favor such a restrictive, narrow interpretation of “coopera-
tiveness”. As we will shortly see, it is also a matter of the abstraction level taken.
In the extreme case, the users are sort of PEs who cooperate via email using the
resources of a network.

Other authors, like TANENBAUM and VAN STEEN, try to give a loose, very
liberal characterization only [TvS02, p.2]:

A distributed system is a collection of independent computers that
appears to its users as a single coherent system.

Still, the authors make use of a rather technical terminology, they talk of comput-
ers or – in case of WU – of processing elements, which unnecessarily restricts the
interpretation of the terms.

We think that at an abstract level distribution is primarily a logical conception
and that it is adequate to give a formal definition based on a proper model. Sec-
ondary, distribution has a technical dimension. That means the logical conception
needs to be filled with some technology and with terms of that technology domain.
Dependent on the domain it might be appropriate to talk of processing elements,
computers, or something else. Key is to catch the nature of distribution underlying
all these technologies.

4.1 What is Distribution? 117

4.1.2 An Algebraic Model of Distribution

As a starting point, let us take a logical entity, a component that encapsulates some
functionality. A prerequisite for distribution is that the component under consider-
ation can be logically split up (“decomposed”) into separate parts, each of the parts
representing a new component. The parts communicate to each other via precisely
defined interfaces in form of interacting messages; the message set exchanged be-
tween two interfaces is usually subsumed under the termprotocol. In other words,
a monolithic (meaning non-distributed) entity gets refined by a network of sepa-
rated but cooperating parts. From an outer perspective, the conglomerate of parts
preserves the message syntax and the semantic behavior that can be experienced
at the interfaces of the monolithic entity. The “outer” interfaces do not necessarily
need to be distributed over the separated parts; that is up to the design rational and
the objective target of the distribution.

Assumed that a componentL can be refined inton subcomponentsLk (k ∈
{1 . . . n}, n ∈ N, n ≥ 2), some of them exposing a communication relation.
For the sake of brevity we presumemutual feedbackcomposition “⊗” only. For
simplicity, we assume that for the componentsL1, . . . , Ln their sets of channels
are pairwise disjoint. To connect the channels we use simple connectorsSCi,j with
(i, j) ∈ N ⊆ {(i, j) : 1 ≤ i < j ≤ n}, which basically rename the channels.
Formally, each componentSCi,j renames a set of channels{x1, . . . , xk} into a set
of channels{y1, . . . , yk}. Thus we have

[[SCi,j]] = (x1 = y1 ∧ . . . ∧ xk = yk)

The refinement ofL is then expressed by the formula

L ∃x, y :
∧

1≤i≤n

[[Li]] ∧
∧

(i,j)∈N

[[SCi,j]] (4.1)

wherex andy are the sets of internal (renamed) channels.
Quite often it is overseen that formula 4.1 just describes a functional decompo-

sition, which is a preparation step for distribution; it is not the actual distribution
onto a network of computing entities. The design challenge is to find a suitable
functional decomposition that serves as a basis for distribution.

When talking about distribution, we refer to the logical conception that the
functional parts get spread over, say, hosts or physical nodes, meaning that they
require some sort of communication means in order to bridge the spatial sepa-
ration. That is an important difference to a purely functional split-up. The inter-
action of the functional parts in a distribution network isnot fault-free per se; it
is sensitive to disturbances on the communication medium and dependent on the
properties of the connection. We condense the whole communication medium in a

118 Distribution

model of a connector, which we callcomplex connector. The complex connector
is a component that represents the properties of the communication channel and
its effects on the transmission of messages. These properties are called Quality of
Service (QoS) attributes and include all relevant characteristics, such asreliability,
throughputetc.

There is a large variety of connectors. In the simplest case, a complex connec-
tor is just a renaming of channels and the identity on the respective streams. In
the most general case it can be a complex relation between its input and output
channels.

Given a set ofn componentsLi, 1 ≤ i ≤ n, with pairwise disjoint sets of
input and output channels, we may use a set of complex connectorsCi,j with
1 ≤ i < j ≤ n and(i, j) ∈ N ⊆ {(i, j) : 1 ≤ i < j ≤ n}. Each pair inN is
called acommunication relation.

We construct a network of the componentsLi connected by the complex con-
nectorsCi,j by the specification

L ∃x :
∧

1≤i≤n

[[Li]] ∧
∧

(i,j)∈N

[[Ci,j]] (4.2)

wherex is the union of all channels in the complex connectors. Again, we assume
that for all connectors their sets of channels are pairwise disjoint.

In the simple case, allCi,j are the same after renaming the channels; in the
general case, there is a different connectorCi,j for each communication relation
in N .

As we can see in comparison to equation 4.1, the functional decomposition
network is a distributed communication network assuming ideal communication
conditions, the complex connectors get replaced by non-time delaying, ideal “short
curcuits”. Equation 4.1 turns out to be a special case of equation 4.2. That is an
important observation. Many popular modeling languages assume ideal commu-
nication relations only. Typically, a solid line represents an ideal communication
binding between entities. Distribution networks cannot be modeled like that. We
need means to distinguish ideal from non-ideal communication, that is we need
to distinguish between internal (ideal) communication and external (disturbed)
communication to a remote peer. Furthermore, we need to specify the model of
the external communication relation. If we do not introduce proper modeling en-
hancements for that, our models suffer from a loss of semantic expressiveness.

It is important to note that our mathematical definition of distribution requires
equation 4.1and equation 4.2 to be valid; we call this the demand forglobal
identity. Equation 4.1 says that some functional parts put together compose some
“larger” functionalityL; the behavior of that functionality can be experienced at
some “outer” interfaces, the interfaces ofL. Equation 4.2 puts a further require-

4.1 What is Distribution? 119

ments on the design of the functional parts: each partLk has to be designed so that
it compensates the communication deficiencies modeled by the complex connec-
tor. The complex connectorsCi,j, on the other hand, do not have functionality that
contributes to the compositeL; that is guaranteed by equation 4.1.

Our definition of distribution, condensed in the two equations above, is com-
patible with most definitions found in literature. Many definitions like the ones
quoted match perfectly with equation 4.1 but most authors are very implicit or
use rather cryptic paraphrases for the fact of equation 4.2. WU speaks about non-
negligible delay in message transmission between processing element and forgets
to mention other non-negligible QoS attributes; TANENBAUM and VAN STEEN

rely on the implicit knowledge that independent computers must be somehow
connected in order to appear as a single coherent system. The advantage of our
formal approach is evident.

4.1.3 The Complex Connector

In our definition of distribution the notions of asimple connectorSC and acom-
plex connectorC are most striking. Whereas the simple connector is merely a
helping construct that explicitly captures the interconnection of components via
its channels, the complex connector adds a new dimension: all properties of the
transmission media used to bridge the “gap” between remote entities are con-
densed in a model of QoS attributes.

Properties likedelay and jitter impact time in a timed stream and are sub-
sumed under QoS attributes. These attributes can be either implicitly included in
the model ofC or can be explicitly captured by a specificationQ in a glass-box
model ofC. For the sake of clarity, we prefer the latter. Other properties such as
probability ofmessage lossor message dublication[ITU94] also come under QoS
attributes and have an impact even on untimed streams.

We denote the part ofC that concerns only the aspect of connectivity bySC.
SC corresponds to the simple connector introduced along with formula 4.1; it is
C withoutQ.

In the most general case, all input and output of componentC has to pass
componentQ, i.e. IQ = OQ = IC ∪ OC, where we assumeIC ∩ OC = ∅, see
figure 4.1. The syntactic interfaces ofC andSC are identical:C ∈ (I � O) and
SC ∈ (I � O).

We call this idea of filteringtotal filtering and denote it by the operator�,
which is not commutative by stressing the different roles ofQ andSC. We say
that “SC is (totally) filtered byQ”. Formally, we define total filtering as follows

Q� SC = Q⊗ SC

120 Distribution

SC

Q

I O

I O

C

Figure 4.1: Modeling Quality of Service (QoS) attributes

where we assumeQ ∈ ((I ∪O) � (O ∪ I)) andSC ∈ (I � O). Note that then

Q� SC ∈ (I � O)

In this specific context, the filter models QoS attributes. An elaborated model
of a complex connector between two communicating peers explicitly respects QoS
attributes and clearly distinguishes between the connectivity function and its QoS
aspects:

C Q� SC (4.3)

Very often, the formulation of QoS attributes for a complex connector is es-
sential in network design.

4.2 Introducing the Complex Connector in ROOM 121

4.2 Introducing the Complex Connector in ROOM

We are not going to use the algebra to formally specify models of communication
but use ROOM instead. Consequently, we uplift ROOM’s language capabilities by
the notion of the complex connector, a conception which we identified as essential
to model distributed systems.

4.2.1 Discussion of Solutions

The notion of asimple connectoras introduced in formula 4.1 matches perfectly
with the notion of a binding in ROOM. Simple connectors connect components,
so do bindings via ports. Simple connectors like bindings do not have any impact
on the messages they transport, they behave ideal: delivery is immediate without
any time delay, the message order is preserved, and the message and its content
experience no modification of any sort. Simple connectors and bindings are struc-
tural properties in our models, they manifest communication relations. Besides
components, simple connectors are first class concepts, neither can be substituted
by the other.

For the notion of acomplex connectoras introduced in formula 4.2 there is
nothing comparable in ROOM. Basically, there are two options to introduce com-
plex connectors in ROOM models: (1) The complex connector is modeled by a
distinct actor class and gets inserted between two communicating actor classes.
Still, the actor imitating the complex connector and the communicating actors are
connected by ideal bindings. This situation is shown in figure 4.2 a). (2) The con-
cept of a binding is extended. The proposal is to extend a binding by an optional
reference to an actor class specifying its behavior. The actor class must have two
ports (without replication!) that complement the message schemata (the ROOM
protocols) defined for the ports the binding interconnects. This situation is infor-
mally shown in figure 4.2 b). The arrangement is very close to the concept of
channel substructures in SDL [EHS97, p.121 ff.]. For a more precise definition of
the ROOM enhancement watch out for chapter 6.

The advantage of the first option is that there is no need to enhance ROOM.
Its major drawback is that the complex connector looses its status as a first class
concept. The complex connector becomes an actor among others and is poorly
reasoned as an structural concept of semantic importance. We therefore advocate
the solution to extend bindings by an actor class reference.

4.2.2 The Extension: Typed Bindings

The language enhancement comes at little cost. The binding remains a first class
concept and gets improved by a typing concept: the referenced actor class is in-

122 Distribution

Complex
Connector PartyBPartyA

Complex
Connector

PartyBPartyA
actor class
reference

a)

b)

Figure 4.2: Options to introduce complex connectors in ROOM: (a) actor class,
(b) enhanced binding concept

terpreted as the binding’s type. If actor classA1 is the parent class ofA2, and if
binding specificationB1 refers to actor classA1 andB2 to A2, then the type of
B2 is a subtype ofB1. That means, bindings can be easily exchanged by subtyped
bindings in a model.1 If we define the type of the ideal binding (not explicitly
referring to any actor class) to beideal, all other non-ideal bindings are a subtype
of ideal.

With the type concept, bindings become sort of detached from their local scope
within an actor class. In ROOM, bindings are individually defined for each pair of
ports within an actor class, i.e. between ports of actor references or between a port
of an actor reference and an endport of the containing actor class. If typed, the
binding refers to something outside the containing actor class context, namely to
another actor class that specifies a message schema for the binding (via the ports
of that actor class) and some behavior. That way, several non-ideal bindings may
share the same specification; they are said to be of the same type.

By using an actor class as a specifier for bindings, one can take full advantage
of all ROOM features to model and decompose a binding. This said, it is even
possible to use typed bindings within such an actor class. Since typed bindings
are foremost our means to express the aspect of distribution, it may seem – at first
sight – puzzling to define a binding that can be itself subject to distribution. As we

1Strictly speaking that statement can be proven wrong. In ROOM, the child actor class must
not be a rigorous specialization of its parent class. This oddity impacts also the type concept for
bindings. But the authors of the ROOM book annotate that there have to be good reasons to violate
the principle of rigorous specialization [SGW94, p.261]. So, in most cases, the footnoted statement
will be true.

4.2 Introducing the Complex Connector in ROOM 123

will soon see in chapter 5, a binding can also act as an abstraction that resolves to
the notion of an intermediate system.

Basic Notational Convention

For typed bindings we introduce a new symbol that we are going to use in our
ROOM diagrams: slim to remind of a binding but somewhat boxed to indicate
that some complexity in terms of behavior is attached to it, see figure 4.3. The
name of the referenced actor class is written inside the symbol and, by conven-
tion, starts with a small letter. The ports the typed binding connects must find their
(unique) conjugated counterpart at the actor class the binding refers to. The nota-
tion suggests an option to indicate bidirectional message flow and unidirectional
message flow. If of relevance this addition may be used.

actorClassReference

actorClassReference

a)

b)

bindingName

bindingName

Figure 4.3: Notation for typed binding: (a) bidirectional, (b) unidirectional; bind-
ing name is optional

The name “typed binding” refers to our realization of the complex connector
concept in ROOM. But note that our definition of a typed binding is not identical
to the notion of a complex connector; in fact, we relaxed an important constraint
which constitutes the complex connector. It is possible to “abuse” the concept
of a typed binding to such an extend that it turns out to be very much alike an
actor, but limited to two ports only. If, for example, a typed binding consumes
two subsequent messages (each message carrying an integer number), adds their
data words, drops the two messages and ejects a new message with the sum of
the integers, this would severely violate our definition of a complex connector.
Our definition demands that the exchange of all complex connectors by simple
connectors (that preserve syntactic interfaces, of course) has no impact on the
general functionality of the whole – disregarding time delays. The constraint of
global identityis not guaranteed by the use of typed bindings. Later, in chapter 5,
we will revisit our definition of distribution and reason for local identity instead

124 Distribution

of global identity. Until then, we have to validate the correct use of typed bindings
on a network-wide scope.

The definition of a complex connector might lead to connector specifications
that remind us little of the QoS attributes, which we originally had in mind. Look
at figure 4.4: One typed binding refers to an actor class that does message encryp-
tion, the other typed bindings do message decryption. This sort of use of a typed
binding relates to the idea of factoring outaspectsto the connector and has been
around as an enhancement to connector-based ADLs for some few years [SG96].
Novel is our way of approaching the complex connector including its definition.
As odd as it may seem, as long as the actors still function correctly with the typed
bindings replaced by ideal bindings, there is nothing to object against such specifi-
cations of complex connectors. Rather, we may have to revisit our narrowed scope
of understanding. A complex connector is an abstraction of a connection medium,
which goes beyond capturing traditional QoS properties. That is to keep in mind,
because we will mostly use the complex connector for modeling QoS.

encodeSndr Switch

RcvrA

RcvrB

decode

decode

Figure 4.4: Example: En-/decoding complex connectors

Enhanced Notational Convention

References of a typed binding to an actor class correspond very much to the con-
cept of actor references in ROOM. Naturally, one may ask whether there are fea-
tures related to actor references that may be equally applicable for typed bindings.
That is a tricky question because the main difference between actors and bindings
is in the incarnation/destruction process: Incarnation and destruction of bindings
is tightly bound to the creation and destruction process of actors; bindings depend
on actors, they are incarnated and destroyed along with the actors. Actually, estab-
lishing a typed binding means to incarnate the referenced actor class and to insert
the actor class instance in the line of communication. This is what we call afixed
typed binding in analogy to fixed actor references. It is the default incarnation
mechanism for typed bindings and corresponds to the casual incarnation process
for (ideal) ROOM bindings. Anoptional typed binding is not created along with

4.2 Introducing the Complex Connector in ROOM 125

the pair of actors it should connect, its creation is suppressed. Optional typed
bindings have to be dynamically created and destroyed by command after the ac-
tors to connect have been incarnated. The command automatically connects a pair
of ports of the specified binding (given by the binding name) that have not been
connected yet. Similarly, animportedtyped binding means to import an compati-
ble actor into the first available slot of the specified communication relation. The
notation for fixed, optional and imported typed bindings is shown in figure 4.5.

actorClassReference
a)

b)
actorClassReference

actorClassReference

fixed

optional

importedc)

Figure 4.5: Extended notation for typed bindings: (a) fixed, (b) optional, (c) im-
ported

The notation is fully compatible with the notation and the commands for actor
references (see also chapter 6). A replication factor, obviously, is of no use for
typed bindings. Each referenced actor class must have only two ports without
replication. One could also introduce a substitutable reference modifier for typed
bindings which we have not due to a lack of practical use in our models. As the
reader will notice, in our models we even manage to survive with fixed typed
bindings only.

Generalizing the Notion of Bindings

One could think about generalizing the notion of a binding. What about bindings
that do not only interconnect two but three, four or more ports? As a matter of fact,
there is no reason why not to introduce the generalization of an n-nary complex
connector and n-ary typed binding, respectively. But keep in mind that multi-
party bindings are not as trivial in design as two-party bindings are and can easily
lead to constructs we possibly perceive as counterintuitive. For example, if we

126 Distribution

would use the complex connector to model connectionless communication, we
would have to give up the understanding of a complex connector as a model for a
connection! While methodically consequent and correct, we decided not to use n-
ary typed bindings but use actor classes instead, which stand for the respective sort
of communication service to be provided. By this approach, we blur the border of
a clear mathematical reasoning and a clear methodical approach but become more
intuitive from the standpoint of an engineer. This is a typical case, where one has
to judge between a stringent approach and its applicability.

In order to not completely blur the border, we decided to use a special notation
for components, which are modeled as actor classes but could be (methodically
correct) modeled as n-ary typed bindings as well. These actor classes are symbol-
ized as rectangles with rounded edges. ROOM++, our extended version of ROOM,
supports n-ary typed bindings.

Remarks

Note that typed bindings can be only specified between ports of actor references!
The communication between a relay port of an actor class and the reference port
of an actor reference cannot be subject to distribution. An actor class can be the
logical container of a set of actor references that make up a network of distributed,
remote entities, but it cannot be the border on which inner typed bindings end. If
so, we would run into severe problems of keeping a model consistent and compos-
able. See, for instance, figure 4.6. The typed bindingb1 imposes implicit require-
ments on the communication relation of portp1 andp2 (e.g.b1 may rearrange the
order of messages) that remain totally hidden for the design of actor classA2. A2
is just designed to compensate transmission defects ofb12 (say, on the average
each tenth message gets lost) and is messed up by the unexpected wrong order of
messages.

A1 A2

b1 b12

p1 p2

Figure 4.6: Example of an invalid specification with typed bindings

Note also that one has to be extremely careful with the design of actor refer-
ences that have a typed binding attached to them. These actors may undermine the

4.2 Introducing the Complex Connector in ROOM 127

aspect of distribution by tunnelling communication via the behavior component.
Similarly critical is the use of ROOM SAPs. If not carefully used we may mess
up our models of distribution. Distributable entities should be modeled as inde-
pendent as possible having as little contextual dependencies (modeled by ROOM
SAPs and the behavior component) as possible. Although our models are only
logical models of distribution, they should be deployable in practice.

4.2.3 The Algebraic Definition Visualized

With the new notation introduced we can visualize the algebraic definition of dis-
tribution. Figure 4.7 a) shows the functional breakup of an actorL into several
composing actors. Figure 4.7 b) shows the replacement of ideal bindings by typed
bindings modeling message loss.

l1

l3

l2

L

l1 l2

l3

C12

C13 C23

La) b)

SC12

SC13
SC23

Figure 4.7: Equation 4.1 and 4.2 visualized: (a) functional breakup, (b) distribu-
tion

If the actor referencesl1, l2 and l3 are the same in figure 4.7 a) and b) (as
demanded by the general identity requirement) then their actor classes must have
been designed in such a way that they are capable to compensate the message loss
modeled by the typed bindings. So, there are two aspects that shape the design
of l1, l2 and l3: (1) The actors represent functional fractions of the composite,
actorL. That is their functional aspect. (2) At the same time, the actors have to
handle the impacts on message transmission by the complex connectors. That is
the communication aspect imposed by the fact of remote communication. We will
turn to this two design aspects of a distributable component in chapter 5.

128 Distribution

4.3 Networked Communication

For this very section, we would like to alert the reader. Although basically straight
and simple, the author experienced people getting stuck with the following mate-
rial. Our approach is that we look at any layer of a communication system indepen-
dently. Like a surgeon we carefully cut an individual layer out of its environmental
context of upper and lower layers and look at the individual layer as a network of
its own right. This approach breaks with the traditional OSI way of thinking and
arguing about systems design – and many people, especially experienced experts
in the domain, seem to be “trapped” in this tradition. In OSI dominates the un-
derstanding that an upper layer is realized by services of a lower layer; some use
the somewhat misleading terminology to say that the lower layer “implements”
the upper layer. Following the OSI tradition, there is no notion to treat a layer as a
completely independent unit.

The complex connector we introduced in the previous section is a first class
abstraction; there is no helping construct needed such as a (lower) layer. OSI, on
the opposite, defines the concept of a connection only in the context of layers: a
connection is an association (cooperative relationship) established by the lower
layer [ITU94]. Again, we are trapped in the OSI thinking of upper and lower
layers.

4.3.1 Specialty of the Approach

In this section we view each layer in a communication system as a self-contained
unit without any dependencies to other layers. Each layer unit consists of dis-
tributed entities communicating remotely to each other via a network that inter-
connects the entities, see figure 4.8.

From a methodological and engineering viewpoint we model each layer ab-
stractly, modelingwhat the distributed layer entities do and modelingwhatkind
of communication services and communication resources the entities use to bridge
their spatial distance; for the time being we are not interestedhowthis is achieved
via a lower layer. That is, the model of a network is an abstract model of dis-
tribution, which includes a network topology (who is permitted to communicate
with whom) and the used communication services (connectionless or connection-
oriented).

Relation of Complex Connector and Communication Service

Where does the complex connector fit? What is the role of the communication
service? The complex connector represents a modeling construct that abstractly
emulates all effects of the impacts that remote communication between distant

4.3 Networked Communication 129

Entity A

Entity D

Entity B

Entity C

Communication
Service

Figure 4.8: Modeling Distribution: Communication network of entities communi-
cating via a communication service

parties may have on the communication. However, our realization of the complex
connector, the typed binding, is limited in its use: it can be only statically tied
to two ports of two actor references. How about establishing/releasing complex
connections dynamically? We need something, which we can ask for inserting
and removing a complex connector between any two ports at some point in time.
The communication service fulfills this role. The communication service is an
abstraction that realizes an omnipresent “meta-connector”: even though all com-
munication parties are remote from each other, all of them have access to this
“meta-connector” and can request a complex connector for communication. That
is the power of abstraction! In our models we have access to a virtual service that
is nothing we can explicitly point at in the real world!

To highlight this very special virtual service in our models, we use a slightly
modified actor class symbol for it: we draw the actor class with rounded edges.
The new symbol serves as a semantic mark of distinction.

Viewpoint on Subject of Study

In chapter 3 we studied TCP and UDP in a way the standard presents them
(page 90 ff.). This chapter’s viewpoint suggests a different approach. Compared
to figure 3.13 (page 90) we now model the communication among TCP and UDP
users, respectively, as a self-contained communication network and the commu-
nication among TCP/UDP service providers as a self-contained communication
network, see figure 4.9.

The glue that interconnects the user network and the provider network is sub-
ject of another main chapter. It is chapter 5 that introduces a precise definition of
layering and shows different ways of smoothly interconnecting layers. With the

130 Distribution

TCP
User

TCP
User

TCP
User

TCP
User

TCP User
ComServ.

TCP
Provider

TCP
Provider

TCP
Provider

TCP
Provider

TCP
Provider

ComServ.

UDP
User

UDP
User

UDP
User

UDP
User

UDP User
ComServ.

UDP
Provider

UDP
Provider

UDP
Provider

UDP
Provider

UDP
Provider

ComServ.

Figure 4.9: TCP and UDP from the viewpoint of networked communication of
independent layers (compare to figure 3.13)

technique presented in the chapter about layering, we can perform the transition
from figure 4.9 to figure 3.13 – as one option. Another sort of transition is also
possible.

4.3.2 Connection-oriented Communication Networks

With the help of the complex connector we can describestaticconfigurations of
distant connection-oriented communication. The complex connector concentrates
all impacts that the transmission may have on the messages to be conveyed. In
reality, connections are rarely static; they are rather a form of a long-lasting dy-
namically created connection. Normally, connections are set-up and released on
demand. The question is how we can modeldynamicconnections in ROOM that
will be created and destroyed at run-time.

At first sight, the use of optional typed binding contracts seems to solve the
problem. But that is just a halfway solution. Optional typed binding contracts are
still static in the sense that the parties involved in the contract are fixed and given.
On the other hand, we would like to stick to the approach shown in figure 4.8:
The network should have all the meta knowledge about the network infrastructure
and its topology, and should be in charge of connection establishment and release.
And connections should be possible between any two parties as long as not in
contradiction with the network topology.

The solution is to use theimport feature for actor references. Imported ac-
tor references are a powerful tool that enables a modeler to described patterns of
context an actor can be put in. An imported actor reference represents a certain

4.3 Networked Communication 131

context an actor can be plugged-in during run-time; it is a context that co-exists
with the context (the decomposition frame) the actor was incarnated in. A dynamic
connection can then be interpreted as a context consisting of a typed binding con-
tract and two imported actor references. Modeled that way, a dynamic connection
describes a pattern of collaboration.

Modeling a Connection-Oriented Communication Network

Let us become concrete and take the TCP service user layer and model it as an
independent connection-oriented communication network. Remind yourself that
the TCP service user can be substantiated by HTTP [FGM+99], FTP [PR85],
many other application protocols, by proprietary or standardized applications.

Figure 4.10 shows the TCP user network with the TCP users as the commu-
nicating entities. Via its port referencec the TCPUComService can have many
TCPUser actors. EachTCPUser has two port references: a control-oriented port
referencec to request and release a connection service, and a data-oriented port
referenced to send and receive data. So far, nothing has changed compared to
the TCP model in chapter 3. New is that port referenced is unbound. Portd gets
bound as soon as theTCPUser is imported as the initiator or acceptor of a con-
nection request. In that case,TCPUser acts inside theTCPUComService in an
additional context; the context is given by the typed binding contracttcpConnec-
tor including the imported actor references. Note that the typed binding contract is
fixed and not optional or anything else. Whenever a related initiator/acceptor pair
is imported, the typed binding is incarnated and inserted to provide a channel for
communication. Fixed typed bindings contracts are much more dynamic than the
reader might have anticipated.

The whole point of modeling dynamic connections is a matter of delaying the
binding of ports. This technique is independent of the fact whether the binding is
of type ideal or not. The only way to realize this sort of late binding in ROOM is
to describe the late binding as a collaboration of actor roles that define a plug-in
context to interconnect unbound ports at run-time. What we just do to model the
effects of remote communication is to exchange ideal (late) bindings via typed
(late) bindings. In figure 4.10 the network can handle a maximum ofn late bind-
ings of typetcpConnector.

The coordination logic that accepts connection requests and releases via port
instances of port referencec and synchronizes the interplay of control information
between two ports is “hidden” in the behavior component ofTCPUComService.
The behavior component also supervises whether a port incarnation of port refer-
encec, sayc[3], is permitted to coordinate with another port, sayc[7]. This is the
so-called network topology, which may impose restrictions on permitted pairs of
user communication. We will come back to this in the next section about address-

132 Distribution

initiator acceptor

tcpConnector

TCPUComService

dd
n n

Connection
TCPUser

c

d

c

QoS

QoS

Figure 4.10: Model of the TCP user layer as an independent, abstract network

ing.
We could have added a port referencem on the boundary ofTCPUComService

as a network management interface. Viam an administrator could, for example,
dynamically change the topological configuration of the network, manually shut
down connections to release hanging communication etc.

Note that for dynamic connections the network itself models QoS properties
for the establishment and release phases of a connection. The typed binding mod-
els the QoS properties for message transmission, the network in addition may
specify e.g. the time required to set-up or release a connection, the failure rate of
successful connection requests, the tendency to spontaneously and unsolicitedly
release a connection, which is a matter of connection reliability, and so on and
so forth. It is the modellers responsibility, which properties are of interest for the
purpose of the model.

As a service to the reader, the modeller may expose the general QoS attributes
of the communication service and the specific QoS attributes of the complex con-
nector via a note. The note attached totcpConnector refers to the complex con-
nector, the other note to the communication serviceTCPUComService. We did
not specify concrete values in the diagram in figure 4.10.

Remarks about tcpConnector

We have not said much about the details of a specification fortcpConnector. The
reason is that the TCP complex connector represents an almost ideal message

4.3 Networked Communication 133

transporter. Message loss is rarely enough to neglect it, the message order is pre-
served, so just the delay of message transfer may be of relevance. Per message
the delay may vary from some milliseconds to several seconds. If network per-
formance analysis is not the primary matter of concern for a system architecture
model, it is usually sufficient to count in a constant time of delay or to neglect
delays completely. Here, we assume a reliable complex connector of almost no
delay. The complex TCP connector just converts incomingsend messages tore-
ceive messages and vice versa.

Run-Time Behavior

A brief look at an incarnated version of figure 4.10 may help understand the pre-
sented specification from a run-time perspective. Note that the message schemata
for portc andd remain the same as presented in chapter 3, see especially table 3.2
on page 93. So does the actor model of a TCP user, see figure 3.14 on page 94. A
typical scenario of two TCP users establishing a TCP connection to communicate
to each other is described subsequently and outlined in figure 4.11.

userA userB

tcpConnector

tcpuComService

connection
userA

connection
userB

listenconnect

Topology:
c1 ↔ c2

close

send
receive

send
receive

closec1 c2

Figure 4.11: TCP user network, run-time scenario

❶ Actor userB requests a connection object viagetConnection() from the be-
havior component and binds a local, free TCP port to the connection object.
The TCP port (the local connection endpoint identifier, so to speak) is given
as a parameter ingetConnection().2 ThenuserB calls thelisten() method and

2This initial procedure will be refined and become more clear in section 4.4.

134 Distribution

waits forlisten() to return. The return oflisten() indicates that the connection
is now ready for use. The return value is the address of the remote party’s
local connection endpoint, which includes the remote, local TCP port and
the IP address. More about addressing issues can be found in a subsequent
section.

❷ Actor userA also requests a connection object viagetConnection() and binds
a local, free TCP port to the connection object. Instead of listening for
an connection invitation,userA actively tries to establish a connection via
methodconnect() of the connection object. The address of the partyuserA
wants to connect to,userB in this case, is handed over as a parameter to
connect(). The address contains a remote local TCP port and an IP address.

❸ The tcpuComService actor receives thelisten andconnect messages with
the corresponding parameters as message data. If aconnect message refers
to a TCP port/IP address pair for which the communication service actor has
received a correspondinglisten prior to that, thentcpuComService sets up
the scene to interconnect both users. Otherwise,tcpuComService returns an
unsuccessfulconnectReply message touserA. Of course, the prerequisite
for interconnectinguserA and userB is that the topology of the network
permits communication.

❹ If there are no objections against interconnectinguserA anduserB, tcpu-
ComService importsuserA in theinitiator context anduserB in theacceptor
context. Automatically, ROOM incarnates and establishes a typed binding
tcpConnector between theinitiator and theacceptor. For the import, the
communication service must know the identifiers ofuserA anduserB. In
ROOM, the import primitive has the following format in C++:

result = aFrameSAP.import(actorId, actorRefName);

Thus, the actor identifiers must have been submitted along with thelisten
and theconnect message. If both imports are successful,tcpuComService
sends alistenReply to userB and aconnectReply to userA. As a result, the
methodslisten() andconnect() return.

❺ The import intcpuComService binds both portsd of the respective network
users. Now,userA anduserB can use the methodssend() andreceive() to
transmit and retrieve data. Methodsend() is translated into asend mes-
sage. Methodreceive() blocks until an incoming messagereceive has been
received.

4.3 Networked Communication 135

❻ If userA or userB closes or aborts the connection viaclose() or abort(), the
connection object at the other side continues to exist (although not much
usable anymore) until it is also explicitly closed or aborted. On receipt of a
close or abort message,tcpuComService immediately deports actoruserA
anduserB from the connection context. ThetcpConnector is not available
anymore for data transmission.
Remark:Actually, there is a subtle difference between close and abort.
When closed, outstanding data can be still received from the other actor,
but nothing can be sent anymore. An abort abruptly and mercilessly re-
leases the connection. Our model cannot capture this difference. A more
elaborated model of TCP would unveil that a TCP connector is actually
composed out of two uni-directional complex connectors. Aclose() only
releases the connector in the sending direction (the connection is said to
be “half-open” [Pos81b]), whereas anabort() quits the sending and the re-
ceiving connector. This refined model is a very good example illustrating
that abstract models may put different emphasis on the aspects they model
depending on the purpose of their use. If connection release handling is
unimportant, our simplified model may be sufficient.

Some code that presents a possible implementation foruserA and userB is
shown in figure 2.5 and figure 2.6 (page 2.5 f.). Despite the fact that instead of
a connection object a socket object is used in the two Python programs (sockets
are a standard interface for TCP users), the scripts very well match the described
behavior.

4.3.3 Connectionless Communication Networks

What is it that differs connection-oriented communication from connectionless
communication? Basically, it is a matter of addressing. In connection-oriented
communication, internal interfaces of communication are associated with a fixed
(better: temporarily fixed) communication partner. Information that is pushed to
the interface pours to the communication partner; and information the partner
wants to notice us, pops up at the interface. In that sense, the interface is a sort of
representation of the other party, and the interface identifier is an internal address
denoting the other party. So, talking to another party requires to either use another
interface (that is bound to the other party) or to newly bind the interface with the
other communication party.

Figure 4.12 visualizes the addressing principle. The cloud symbols represent
address spaces, herespace1 andspace2. An address space is composed of indi-
vidual addresses,a1, a2 and so on. An address has to be unique with regards to its
address space; an address is said to belocal to the address space. An address can

136 Distribution

be associated to another address of the same or another address space. The asso-
ciation must be unique and unidirectional. In figure 4.12, addressa1 of space1 is
associated toa2 of space2 and vice versa.

space2
a1

space1 a1

a2

a3

; define address based communication

(define (inject location data)
(consume (resolve location) data))

; connection-oriented communication

(inject ‘(space1 a1) message)
⇒ (consume ‘(space2 a2) message)

a2

Figure 4.12: Address structure characterizing connection-oriented communication

Note that address associations do not represent connections, they just describe
a structure of address relations. In a communication system, the address struc-
ture is used to direct the flow of information through the system. For the sake of
demonstration, we define address based direction of information flow as follows:
Data that is addressed to a particular address is actually addressed to its associ-
ated address. The definition in figure 4.12 puts it in the words of the language
scheme [KCe98]: The procedureinject takes two arguments,location (a list of ad-
dress space and address) anddata, and is defined such that it is substituted by the
procedureconsume. Procedureconsume takes also a location and a data param-
eter. The data parameter ofinject is handed over as is, but the injected address
is resolved to its associated counterpart. If an address/address space pair is not
associated with another address/address space pair, it is by default associated to
itself.

From an addressing perspective, the addressing structure underlying connec-
tion-orientation per definition demands that one address space is directly related
to another address space via a pair of associated local addresses. That means, con-
nection-oriented information flow can be expressed by a simple inject expression
that evaluates to the consume expression of the associated address, see figure 4.12.

For connectionless communication the general addressing structure looks dif-
ferent. The arrangement of associations is so that two communication partners do
not maintain direct relations between their address spaces, see figure 4.13. Instead,
local addresses are associated to a third party, an external address space,space3.

4.3 Networked Communication 137

space2
a1

space1 a1

a2

a3

a2

space3 a2

a1

a3

; connectionless communication

(inject ‘(space1 a3) ‘(inject ‘(space3 a2) message))
→ (consume ‘(space3 a3) ‘(inject ‘(space3 a2) message)

Figure 4.13: Address structure characterizing connectionless communication

To direct some flow of information froma3 of space1 to a1 of space2, we
have to inject a message that contains information how to further hand it over
to its destination, see figure 4.13. In the example, the message is anotherinject
expression that encapsulates the message to transfer. Methodconsume must be
capable to distinguish “raw” data from data covered as instructions that demand
message forwarding.

In reality, connectionless communication is rarely implemented by packag-
ing instructions for the intermediate receiver; message schemata are used instead.
Also the way to specify the destination address and procedures to resolve address
associations look completely different. A very common procedure isrouting, a
technique used e.g. in the Internet to direct IP datagrams to their destination (see
e.g. [Tan03]). However, our simple example illustrates the basic addressing princi-
ple that underlies connectionless communication: to transfer a chunk of informa-
tion a local address and – in addition – an address outside the context of the local
address space needs to be given. The reason is that connectionless communication
is based on an address structure that uses a mediating address space. Furthermore,
the mediating address space has to function in a certain way in order to forward
messages. In the example we indicated that by aninject statement that needs to be
understood byspace3.

Consequently, users communicating connectionless need to have an internal
representation of the address space outside their locally addressable scope. They
need to specify the destination of their messages. Users communicating connection-
oriented do not have to do that.

138 Distribution

Modeling a Connectionless Communication Network

Again, let us become concrete and take the UDP service user layer and model it
as an independent connectionless communication network. Much alike TCP users,
the UDP service user can be substantiated by e.g. a DNS (Domain Name System)
application [Moc87a, Moc87b], some other application protocols, by proprietary
or standardized applications. The user layer network model for UDP is the con-
nectionless counterpart of the TCP user layer network, which we modeled in the
previous subsection. For comparison see also the upper diagrams in figure 4.9.

Actually, the model for a connectionless communication network is remark-
able simple. The actor class representing a bunch of users,UDPUser, is connected
to theUDPUComService, see figure 4.14. That’s it!

UDPUComService

UDPUser

d

d

QoS

Figure 4.14: Model of the UDP user layer as an independent, abstract network

The addressing structure underlying connectionless communication as shown
in figure 4.13 can be easily uncovered in the ROOM diagram. Identifiers of in-
dividual actor class instances map to address spaces, port identifiers of an actor
map to addresses, and identifiers for individual bindings map to address associa-
tions. TheUDPUComService has the role of the external mediating address space
with regards to the UDP users. More details about addressing can be found in
section 4.4.

As an mediating unit, theUDPUComService is responsible for fulfilling three
functions: (1) take care of the network topology, (2) act as an distributor of data
received from one UDP user to be sent to another UDP user, and (3) realizing
QoS.

The networktopologyis as easy to model as in the connection-oriented case.

4.3 Networked Communication 139

TheUDPUComService just needs to maintain a table that includes entries of per-
mitted and non-permitted address pairs. Previously, a pair of addresses has been
introduced by the notion of an address association. So, the network topology
is described by a set of address associations that refer only to local addresses.
For connectionless networks, the network topology describes potential paths of
flow for data-orientedinformation. For dynamic connection-oriented networks
the network topology describes the potential relations of interfaces that can be
pairwise coordinated viacontrol-orientedinformation. That is an important ob-
servation in preparation for the next section about addressing: Address associ-
ationsbetweenaddress spaces predefine paths of flow of information (be they
data-oriented, protocol-oriented or control-oriented). On the contrary, address as-
sociationsinsidean address spaces (we will call this thetopology) remain to be
interpreted by the object being responsible for the address space. Internal address
associations relate addresses and require further efforts to specify the meaning of
that relation.

In its function as adistributor, theUDPUComService takes the data received
by a send message (see table 3.3 and table 3.4), checks the topology and sends
with a receive message the data out at the port that was specified in thesend mes-
sage. The data is complemented by the address of the sender so that the receiver
knows, who the sender was. The address information might be needed for further
communication.

For that process theUDPComService models allQoS propertiesthat describe
the impact the transmission has on data. For UDP, QoS properties are absolutely
relevant; the transmission is not ideal. Even though today’s networks are ex-
tremely reliable in transmitting UDP data, the chance of message loss cannot be
neglected. Also the time of data transmission may vary from case to case; a data
package may appear as “overtaken” by another data package.

All three functions (topology, distribution, QoS) are implemented by the be-
havior component ofUDPUComService, they are partially made explicit in the
model via notes. A proposal, how to annotate the topology is given in section 4.4.

Remarks about the “Empty” User Network

Some readers may wonder about the “empty” user network in the network model
for connectionless communication. What about the functions we just mentioned,
do they not require some internal data structures to store received data including
addresses and possible some more attributes? Is it not a bit too little of information
that we see when looking at diagrams like figure 4.14? How does one know that
UDPUComService does data transmission and not something else?

The reader is right – at least to some extent. If we are interested in an exe-
cutable model, we need to specify ROOM models to a level of detail that contain

140 Distribution

all these aspects. There is nothing to object against a refinement adapted to the
level of abstraction the model should simulate. We even believe that refining an
architecture to a rudimentary level of executability is to the benefit of the archi-
tecture understanding. The system architect starts to see the consequences of the
architecture design on lower design levels. And, most important, the system archi-
tects is demanded to formulatewhat this specific architecture is supposed to do.
Box diagrams alone leave much room for interpretation. Executability clarifies a
lot.

Though we promote executable architectural models, we do not want to show
all the details in the first shot. One can have lengthy discussions about “what archi-
tecture is”, but most people will agree to the statement that architecture provides
a course grain view on a system. An architecture model should suppress details
that are not of relevance for the understanding of the overall. If we argue from this
point of view, figure 4.14 is at an appropriate level of suppressing details. On that
level it is less interesting to see how the connectionless communication service is
supposed to work; we just assume that it somehow does its job fairly well.

However, we have to admit that ROOM has some weaknesses to express ar-
chitectural relevant information. For example, we cannot tag a ROOM actor class
with a sort of stereotype (much like in the UML [HvW99]) and thereby declare its
generic functionality. The only way in ROOM to mark an actor class specification
as, say, a communication service (be it connection-oriented or connectionless) or
a user component is by naming conventions. Otherwise we cannot be sure that
the actor class is not designed to do something else. But naming conventions are
a very bad semantic means to highlight architecturally relevant information in a
system. Tagging would be helpful for classifying actor classes beyond using in-
heritance for the same purpose. We express tagging by slightly different notational
symbols for actor classes. As already introduced, communication services a sym-
bolized with rounded edges.

Another weakness of ROOM is its lack to annotate QoS attributes to model
components. Most system designers would agree to regard QoS attributes of ar-
chitecture relevance, so they should be visible in the diagrams. The way we handle
QoS properties is by implementing them in the executable architecture model, but
that is an inferior solution as discussed. That is why we sometimes highlight im-
portant QoS properties via annotations in the model as a helping construct.

Run-Time Behavior

A typical scenario of two UDP users sending data connectionless from one party
to the other party is described subsequently and outlined in figure 4.15. Figure 4.15
is an incarnation of the ROOM diagram (figure 4.14) with two users, namely actor
userA and actoruserB. Actor udpuComService is an incarnation of the UDP user

4.3 Networked Communication 141

communication service.

udpuComService

userA

d1

userB

d2

send receive

Topology:
d1 → d2

Figure 4.15: UDP user network, run-time scenario

❶ Actor userA sends asend message toudpuComService. The port identifier
at which the communication service receivessend is thesource addressof
the message; in this case it is portd1. The communication service extracts
the data and the givendestination addressdelivered withsend. The desti-
nation address must be the identifier of another port instanced.

❷ First, theudpuComService checks if the network topology permits data
transfer fromd1 to d2. In this scenario, the topology does not constrain
the exchange of data.

❸ Then, theudpuComService has to apply a QoS model valid for the data
package received bysend. It may require to store a time stamp with the
arrival of send in order to properly simulate transmission delay by delivery
latency. Data may be completely erased from theudpuComService memory
according to e.g. a statistical model of message loss.

❹ The communication serviceudpuComService delivers the data (if it has not
been “lost”) to the receiver at portd2 via areceive Message.

More Models: The UDP/TCP Service Provider Layer

In chapter 3 we made first contact with TCP and UDP. The models in chapter 3
approached TCP and UDP as they are presented in the standards. We left open

142 Distribution

what the dashed line on the provisioning layer stands for. In figure 3.18 the dashed
line indicated the transport of TCP messages between TCP service providers, in
figure 3.20 the dashed line indicated the transport of UDP messages between UDP
service providers.

If we take this chapter’s approach we can model the service provisioning layer
independently of the upper user layer and independently of lower layers. There-
fore, we re-interpret the UDP/TCP service providers asusersof a provider com-
munication service, see also the lower diagrams in figure 4.9. The provider com-
munication service component models all the aspects of distribution. We basically
only have to clarify the paradigm of communication (connection-oriented or con-
nectionless), and the quality of services.

Both, the TCP standard and the UDP standard assume that the service pro-
visioning layer uses connectionless means of exchanging data between individ-
ual service providers; in fact, the standards suggest to use IP, the Internet Pro-
tocol [Pos81a], as the lower layer protocol. Since we are not interested in the
lower layer protocol but in an abstraction of its communication capabilities, we
model the communication service interconnecting the service providers with the
characteristics of IP. We equip the communication service actor class with IP-like
interfaces and model the QoS accordingly.

Figure 4.16 a) depicts a model of the TCP service provider communication
network and figure 4.16 b) depicts a model of the UDP service provider commu-
nication network.

UDPPComService

UDP
Provider

u

u

TCPPComService

TCP
Provider

t
t

Protocol

dd c

a) b)

Figure 4.16: Model of the (a) TCP and (b) UDP provider layer as an independent,
abstract network

The next main chapter discusses the relation of independently modeled com-
munication networks.

4.3 Networked Communication 143

4.3.4 Space-Based Communication Networks

There do exist other communication paradigms that are completely different in
their general approach and in their way how they provide means of commu-
nication. Neither OSI nor the TCP/IP reference model are suitable frameworks
for describing their overall organization. One of these different communication
paradigms isgenerative communication. Generative communication has been in-
troduced in the Linda programming system by GELERNTERalmost 20 years ago
[Gel95]. The basic idea is that a collection of independent (possibly distributed)
processes make use of a globally shared and persistent dataspace of tuples for
coordination and communication. A tuple is a tagged data record consisting of a
number of typed field. Processes can put tuples into the shared dataspace (i.e. they
generate communication records); but they can also extract or read tuples from
the dataspace. Extraction and reading is in return of a search request. A search re-
quest specifies a search pattern by some of the values of the tuple fields a process
is interested in.

In this section we demonstrate that our approach goes beyond the OSI RM
and the TCP/IP RM and that the abstraction of a communication service can be
perfectly adapted for space-based communication networks. We base our consid-
eration on JavaSpaces, a “modern” implementation of GELERNTER’ S tuple datas-
pace. For more information on the subject of distributed coordination-based sys-
tems, as TANENBAUM andVAN STEEN call them, please consult [TvS02, p.699ff.
].

A Brief Summary on JavaSpaces

We will not give a full introduction to JavaSpaces but briefly summarize its service
primitives. The interested reader may have a look at the specification documenta-
tion [SUN02].

In JavaSpaces,entriescorrespond to tuples. An entry is a typed group of ob-
jects. The following service primitives operate on the (entry) space:

write A write operation copies an entry to the space that can be used in future
lookup operations.

read A read operation comes along with a look uptemplate. A template is an
entry that specifiesvaluesfor some or all fields that need to be matched
exactly andwildcardsfor remaining fields. The read operation either returns
a copy of an entry in the space that matches the template or it returns an
indication that no match was found.

take A takeoperation behaves like a read operation except that the entry is re-
moved from the space.

144 Distribution

notify On request, the space cannotify the user when an entry matching a given
template is written to the space.

The operationsreadandtakeappear in two variants: non-blocking and block-
ing. For the sake of brevity, we drop thesnapshotprimitive.

Modeling JavaSpaces

Modeling JavaSpaces on the abstract level just described is almost trivial, see fig-
ure 4.17; implementing JavaSpaces is a real challenge and faces a designer with al-
most all aspects of distributed systems design: data must be replicated and cached,
distributed memories need to be synchronized, the response time might possibly
has to satisfy real-time constraints, data must be reliably transported within the
space etc. In so far, JavaSpaces is a good example demonstrating the gap between
architecture and design: the architecture is (at least on a coarse granular level)
easy to understand; it takes just a few minutes to learn JavaSpaces on that level
and to use it. The implementation of JavaSpaces is at an expert level of skills and
experience.

Space

SpaceUser

write
read
readReply

take
takeReply

notifyRequest
notify

Figure 4.17: JavaSpaces user network model

In figure 4.17, the space is a communication service that processes entries (or
tuples, if you like). Thespace actor is exactly that sort of a omnipresent, virtual
communication service as which we introduced the concept of a communication
service. A closer look at the specification of the behavior component would un-
veil its basic functioning. Here, we trust the written explanation given above. The
Space is used by zero or moreUser actors. The message schema is annotated next
to the binding. Astonishingly, it is that simple.

4.4 Addressing 145

4.4 Addressing

Addressing is crucial to networking and a delicate issue for modeling. Generally
speaking, addressing denotes a concept to identify and locate objects in a defined
scope. So far, we more or less managed to bypass this issue. In the previous section
we were confronted with some first thoughts about addressing in order to explain
the differences of communication services. In this section, we study addressing
systematically and in more detail.

4.4.1 Introducing Addressing Concepts in ROOM

Let us recap what we said about addressing so far: Anaddressdenotes a concept
to identify and locate objects in a defined scope. The scope is the so-calledaddress
space, which is an assembly of addresses with each address being unique in the
assembly. Anaddress associationrelates two addresses to each other; the associa-
tion is directed pointing from one address (the source address) to another address
(the destination address). Source and destination address can but must not belong
to the same address spaces. In so far, we can make a difference betweenexternal
address associations andinternal address associations. External address associ-
ations relate addresses of different address spaces, internal address associations
relate addresses of the same address space.

Mapping to ROOM

Since addressing is a run-time notion (observe, an address identifies and locates
anobject, which is a run-time entity), we have to think about how the conceptions
of address, address space and address association apply to run-time conceptions in
ROOM. Remember that actor, port, and binding are the run-time materializations
of actor class, port (class), and binding (contract). So the question is what an
address identifies: an actor, a port or a binding? What, in consequence, does an
address space correspond to? What about address associations?

We define ports to be the objects that are identified and located by addresses.
Since an actor establishes the context within which a number of uniquely different
ports reside, an actor represents the scope of the addresses, the address space. In
the way bindings relate ports, address associations relate addresses. So, bindings
implement external address associations. To be precise, a binding maps to two
address associations, one in each direction from one address space to the other
address space. The protocol associated with the binding specifies whether both
address associations are used or not. Internal address associations are realized by
the behavior component of the actor. Table 4.1 briefly summarizes the mapping.

146 Distribution

Given this mapping, figure 4.12 (page 136) and figure 4.13 (page 137) could be
easily redrawn as ROOM run-time diagrams.

Table 4.1: Mapping addressing conceptions to ROOM run-time conceptions

Addressing Conception ROOM Conception

address port
address space actor
address association (external)binding
address association (internal)inside behavior component

By default, ROOM has no built-in support to relate a port to an address and
use that address to identify the port. Instead of thinking about a possible language
adaption to ROOM, we follow the conservative strategy to change as little as pos-
sible in ROOM and leave it to the implementor of the ROOM actor to manually
hard-code the address/port relation. Such a relation could be implemented by a
table e.g. in form of an associative array, called directories in the Python program-
ming language.

More of a problem is how we annotate address/port relations in a modelspec-
ification. We are now back on the “class” level of a ROOM model and leave the
run-time object level. Surely, address information is of architectural relevance in a
distributed communication system – it should be made visible although we handle
the port/address relation internally, inside the actor.

Notation

The proposal is to annotate address information outside the actor class symbol
but in conjunction with the port class it refers to, see figure 4.18. Usually, ad-
dresses are of a certain type and format. For example, addresses could be of type
“IP address”, which is a 32-bit number that is usually written in dotted decimal
notation (like 137.226.168.58). Or, another example, addresses could be of type
“TCP port” or “UDP port”, which is a 16-bit number. Address types are best mod-
eled by data classes in ROOM. Thus, the address information attached to the port
class consists of the name of the data class used to model the address type and
precedes the port class name. The optional port class name and the data class
name are separated by a colon; this is the typical type notation used in many other
modeling and programming languages. In fact, what we do is introducing a type
concept for ports, even though we do not strictly implement it as that. In addition,
we may specify actual values, which become assigned to the address data object

4.4 Addressing 147

at run-time. The list of values is given in curly braces and determines the maxi-
mum number of ports to be incarnated. For the sake of brevity we will often use
symbolic names in our ROOM diagrams instead of “real” values.

UDPUComService

UDPUser

d

UDPPort : d

UDPPortTop

{53,80,90}

53 ↔ 80
53 ↔ 90
90 → 80

Figure 4.18: The notation for addresses and address associations exemplified

As was mentioned, external address associations are specified via binding con-
tracts. So there is nothing to concern about. However, if we want to annotate in-
ternal address associations in order to model anaddress topology, we propose
to use a data class for that. The topology data class is visualized inside the ac-
tor class symbol. The port class(es) it refers to is shown by a connecting dashed
line. Of course, there can be more than one topology data class inside an actor
class. Informally, notes next to the data class symbol may list permitted or non-
permitted pairs of address associations, so that one gains a clear picture of the
address topology without digging into the details of the data class implementa-
tion. For a connectionless communication service, the address topology describes
the internal information flow of the data received. For connection-oriented com-
munication, the topology describes the possibility to synchronize endpoints of
control-oriented information.

Figure 4.18 exemplifies the notational proposal discussed so far. The connec-
tionlessUDPUComService has a port classd that is related to address data class
UDPPort. One could also say that port classd is of typeUDPPort. Next to the
port class we find a list of UDP ports that become assigned as concrete values
for the port class if incarnated. Externally, the UDP port class is associated with
the port class of a not further specifiedUDPUser actor class. Internally, the data
classUDPPortTop specifies the topology for connectionless communication. In

148 Distribution

the example, only permitted relations are listed; Port 80 cannot communicate to
Port 90.

For one more time, we see that information that is internal to a ROOM ac-
tor and – according to the ROOM philosophy – invisible to the outside is made
public. This grey-box style of publishing internal actor information becomes a
“trademark” for meaningful ROOM models on an architecture level. Architecture
modeling is not only about structure and overall organization of a system in mod-
ules or components; it is also not only about precisely specifying interfaces. To
some extend, architecture models live in the “grey” border area exposing internal
design information as architecturally relevant information and vice versa.

Handling Asymmetry

Another issue we have to solve is the asymmetry of addressing. Look at the pre-
vious figure, figure 4.18. It is the communication service specifying the address
space of UDP ports not the UDP user. No other modeling option is available.
The communication service has to model the abstraction of transporting data in
a distributed system; this includes the knowledge of the communication topology
and the ability to identify and locate, namely to address users. However,UDPU-
ComService cannot look beyond its “addressed” ports, it does not know, who is
actually connected to, say, UDP port 53; it does not know if the right user is con-
nected to that port. On the other side, the users would like to be related to certain
UDP ports. For instance, a DNS (Domain Name System) [Moc87a, Moc87b] ap-
plication demands UDP port 53 because it is the standardized UDP port number
other applications expect to find it attached to.

Getting the addressing asymmetry of the model in “balance” is primarily a
run-time issue. It requires to extend the message schema on thed ports by regis-
tration messages. One of the first actions the users of the communication service
have to do is to send out a message and ask, for example, “Could you address me
under UDP port number 53, please?”. If the port number is available, the commu-
nication service reserves number 53 as a concrete addressing value for the ROOM
port the request was received at. The communication service’s response “Yes, I re-
served UDP port number 53 for you” indicates successful registration to the user.
After the registration procedure, other users can now rely on that information ad-
dressed to UDP port 53 will bedirectedtowards the “right” user. If it willreach
its destination is a matter of the QoS properties specified for the communication
service.

For the run-time scenarios we described from page 133 on for a TCP user
network and from page 140 on for a UDP user network to be complete, we have
to insert a step preceding❶:

4.4 Addressing 149

● Actor userA anduserB register themselves by calling thebind() Method.
As a parameter tobind() a TCP/UDP port number is specified; it is the port
number the user would like to be addressed by. The return value ofbind()
indicates the outcome of the ROOM port to TCP/UDP port binding. If it has
been successful, the communication service accepts other requests from the
user.

The bind() method is actually a method used on the user to communication
service interface, see e.g. the Python script on page 40. To make this work in our
models for TCP and UDP we have to extend the list of service primitives and
service messages by one more primitive and two more messages, see table 4.2.
This table is to be regarded as an addition to table 3.1 on page 92 for TCP, and to
table 3.4 on page 102 for UDP.

Table 4.2: Binding addresses to ports: service primitives and service messages

Primitive Message

BIND bind
bindReply

The bind extension can be regarded as a configuration procedure. An archi-
tecture model that should be executable must implement at least a rudimentary
configuration procedure. An additional or alternative possibility is to introduce
a management interface for users as well as for the communication service and
configure the system through these.

Addressing: Architecture vs. Design

It is a valid question to ask, why we do not relate portd of theUDPUser Actor with
an UDP port data class as well, see figure 4.18? This is a very hairy question, for
which it is hard to give a definitive answer, because it touches the area of “What
is architecture, what is design?”. The borderline between architecture and design
is hard to draw and academia still has not helped getting that clear, some even
wonder if it at all exists. We would like to give the following answer: In the ROOM
diagrams we use for modeling the system architecture of communication systems,
we aim to suppress details that are not relevant on an architecture level and try
to resist the temptation to show fine-grained details that are nice to know but
not essential on the architecture level. Addressing is of architecture relevance, no
doubt about that, and addresses have to be related to ports of the communication
service for that very reason. As a result, architecture models look asymmetrically

150 Distribution

tagged with addresses (as we named it), which calls for balancing. The balancing
is an implication of the architecture model and an implication is something we
do not need to further highlight. We regard the realization of such implications
a design issue. Otherwise, we could regard our model as sort of overspecified
and, even worse, the architectural relevant information gets blurred: if the user
port class is related to an address data class as well, we cannot clearly distinguish
anymore who addresses whom from an architecture point of view.

This line of argumentation is thoroughly followed throughout the whole work.
For example, in chapter 3, we argued similarly to explicate the Controlled Domain
Model (CDM) only on the user side and not on the provider side. The user’s
CDM implies a similar or reused domain model on the provider side, but that is
not in need to be shown. This “asymmetry” is a characteristic of our architecture
models. We take the view that the implied consequences of that asymmetry are a
matter of the design level and get resolved there to fully balanced “symmetrical”
design models. Though we have to admit that striving for executable architecture
models puts the modeller in a permanent risk to pass the border from asymmetry
to symmetry. Getting an architecture model to execute requires to design behavior,
and that often means to spell out the hidden half of an “asymmetrical” model.

4.4.2 Modeling Address Hierarchies

Until now, we did not consider the full addressing scheme, TCP and UDP users
use to address their communication partner and for being addressed by their com-
munication partner. For the sake of simplicity, we restricted ourselves to TCP
and UDP ports, respectively. In reality, the full addresses consist not only of a
port number but also of an IP address. IP address and port number cascade ad-
dress spaces in very much the same way as the postal system cascades the address
spaces “postal code” and “street number” with “TCP” or “UDP” as the street
name.3 The resulting hierarchies of address spaces are a common means to orga-
nize and structure the whole space of “locations” in a communication system.

There are two options to model address hierarchies: (1) Introduce a new ad-
dress data class that is composed of an IP address data class and a port data class;
use the new data class as a type for the port class of the communication service.
(2) Model the hierarchy of address spaces via actor classes.

Both options are equally valid approaches. The first option is shorter, the sec-
ond option more expressive. Since the first option (introduce a new address data
class) is nothing new and has been discussed quite extensively, we will show what
the second option (model the address space hierarchy) brings to us.

3The analogy of a street name corresponds to what is called aprotocol identifier. We will
comment on this later.

4.4 Addressing 151

Revisiting the TCP User Network Model

Figure 4.19 is an more elaborated model of the TCP user network; it is not very
much different from the previous version, see figure 4.10 on page 132. TheTCPU-
ComService gets a hold on the IP address space. Portc of TCPUComService is
now bound to IP addresses and is connected – via a binding – to an upper ac-
tor classTCPUDemux. This actor class models the TCP port address space, and
addresses via itsc port an TCP user.

initiator acceptor

tcpConnector

TCPUComService

dd
n n

Connection
TCPUser

c

d

a

IPAddr : c

TCPUDeMux

{IP1,IP2,IP3}

TCPPort : c {Porta,Portb}

IPAddrTop QoS

QoS

Figure 4.19: Elaborated model for TCP user network

This separation of address spaces also results in a separation of internal ad-
dress topologies. The topology of the TCP port address space is completely inde-
pendent of the IP address topology. This is a quite good logical abstraction of how
TCP user networks work in the “real” world. The function of theTCPUDeMux ac-
tor is that of an multiplexer/demultiplexer:4 to serialize incoming messages from
the different users down to the communication service, and to spread the incoming
message stream from the communication service to the right port. Since our mod-
els are designed to be executable, a look into the implementation ofTCPUDeMux
would give us a more precise description of its functionality. Plain text, like our
description, is always just a helping communication means among human beings.

The de-/multiplexer (deMux) is such a standard component in a telecommu-
nication system that we want to declare actor classes of that kind. In our models
we use a special notation for de-/multiplexers: the symbol of a deMux actor class

4The name “demux” is a common abbreviation in telecommunications; it combines and short-
ens the word “multiplexer” and “demultiplexer”.

152 Distribution

shapes like a trapezoid. If possible, the port that has the multiplexed stream as
outgoing is put on the short edge of the trapezoid and the port that has the demul-
tiplexed stream as outgoing is put on the long edge.

When incarnated, the ROOM model shown in figure 4.19 “unfolds” to a tree
structure. An incarnation of theTCPUComService is at the root that forks up to
anTCPUDeMux actor per IP address, which in turn forks up to aTCPUser actor
as a leaf per TCP port. Each actor in this tree is running independently in its own
thread of control. ROOM makes it very easy to specify concurrently executing
components.

If we want, we can add an architecture detail to theTCPUDeMux actor. In
figure 4.20, theTCPUDeMux actor contains the same connection pattern as the
TCPUComService actor does with a minor but important difference: the typed
binding has been exchanged by an ideal binding. What this refined model says, is
that data sent from one TCP user to another TCP user within the same TCP port
address space (i.e. the two users have the same IP address) is conveyed without
any impacts of a non-ideal transmission medium. This refined model also matches
quite good with reality. If you have two TCP user applications running on your
Personal Computer (PC) that send data towards each other, the data messages do
not leave your PC but take a “short-cut circuit” inside. So one should not get
fooled by the simplicity of the basic function that is associated with the symbol
for a deMux or any other modeling entity. The hard fact is: the functionality can
be quite complex (see figure 4.20) even though the basic functioning is easily
eye-catched (see figure 4.19).

TCPUDeMux

a

TCPPort : c {Porta,Portb}

TCPPortTop

initiator
d

n acceptor
d

n

Figure 4.20: Possible refinement forTCPUDeMux

Revisiting the UDP User Network Model

Having come that far, it is almost trivial to model the UDP user network. Fig-
ure 4.21 shows an elaborated version of figure 4.14 (page 138) without further
commentary.

4.4 Addressing 153

UDPUComService

UDPUser

d

IPAddrTop

a

IPAddr : d

UDPUDeMux

{IP1,IP2,IP3}

UDPPort : d {Porta,Portb}

QoS

Figure 4.21: Elaborated model for UDP user network

Where has the Protocol Identifier been?

Readers familiar with IP, TCP and UDP may wonder, why we silently dropped
the Protocol Identifier (PI) in our address space hierarchy. Where has the protocol
identifier of IP been? The answer is already in the question: The protocol identifier
is a discrimination mechanism of the Internet Protocol, and we are not modeling
IP here! This was the basic assumption of this chapter: we model a layer as an
independent network. Since the models we looked at in this chapter so far ab-
stractly describe TCP and UDP user communication networks we cannot expect
to be confronted with something that relates to IP.

As a matter of fact, the PI is implicitly existent in our models, but most likely
not in the way most experts would expect it according to their traditional education
in communication systems and computer networks. We are having two models, a
UDP and a TCP user network model, and these models are the two streets – if we
refer to our previous postal service analogy! So, if you have the street you just
need to know in which city (IP address) and at which street number (TCP/UDP
port number) you have to knock on the door. It may seem strange at first sight, but
its true and consistent: the TCP user network model and the UDP user network
model are representatives of two different protocol identifiers.

Revisiting the TCP/UDP Provider Network Model

If we move to another layer, the TCP/UDP provider network, and organize the
two models of figure 4.16 a bit differently using an intermediate address space,

154 Distribution

the notion of an protocol identifier almost naturally pops up.
When we modeled the TCP and the UDP provider network (page 142), we

mentioned that both providers make use of the same connectionless communica-
tion service. Let us assume (as we did) that in both cases the addressing is done
via IP addresses. Then, why not aim for reuse and connect both providers to the
same communication service?! If we do so we need some means to discriminate
the TCP provider and the UDP provider. We can achieve this with an additional
address space that functionally acts like a de-/multiplexer, see figure 4.22.

PComService

IPAddrTop

a

IPAddr : d

Discriminator

{IP1,IP2,IP3}

PI : t
{6}

QoS

TCP
Provider

Protocol

d c

t

UDP
Provider

u

d
PI : u
{17}

Figure 4.22: Combined model for the TCP/UDP provider network

TheDiscriminator actor in the figure has on its upper side two port classest and
u, which are related to aPI (Protocol Identifier) data class. Actually, the protocol
identifier is a standardized number, which is 6 for TCP and 17 for UDP.5

5See http://www.iana.org

4.5 Summary 155

4.5 Summary

This chapter’s main theme, the aspect of distribution in a communication system,
was first approached from a theoretical viewpoint: we mathematically defined a
construct, calledcomplex connector, as an element that (a) represents a line of
communication between distributed entities, and (b) abstracts away all effects re-
mote communication can have on the quality of communication by a set of prop-
erties calledQuality of Service(QoS). Our definition of distribution, condensed
by formula 4.1 and formula 4.2, is much more general but also more precise than
most definitions to be found in literature.

We then introduced the complex connector in ROOM. Therefore, we extended
ROOM’s concept of a binding. Atyped bindingis much like a binding and refers,
in addition, to an actor class that specifies the “interna” of the typed binding (like
e.g. QoS properties). The notation for a typed binding is shown in figure 4.23. The
binding name is optional.

actorClassReference

bindingName

Figure 4.23: Notation for typed binding

The (typed) binding is a contractual conception that ties two ports of two ac-
tors together. Problematic is that the contract is static. To insert and delete typed
bindings dynamically, the notion of a communication service comes in handy.
A communication service is a sort of omnipresent “meta-service” all users are
“magically” connected to despite their distribution. Users can request and release
complex connectors from the communication service. In case the communication
is connectionless, the communication service deals with forwarding individual
messages.

The communication service is key in modeling each layer in a communica-
tion system as a self-contained network without dependencies to other layers. The
communication service is a, so to speak, stand alone abstraction. Because of its
special semantic role, the actor class realizing the communication service is drawn
with rounded edges.

In this chapter we exemplified communication networks on TCP and UDP. We
modeled each layer, the TCP/UDP user layer and the TCP/UDP provider layer,
independently. If we generalize the examples, we see that the focus is on the com-
munication service and less on the user connected to the service (be it a TCP/UDP
user or provider or any other sort of user). That is why we can state that a network
of distributed entities communicates to each other either via a connection-oriented

156 Distribution

(CON) communication service or a connectionless (CNL) communication service.
Both cases are diagrammatically depicted in figure 4.24. Other communication
paradigms, like e.g. space-based communication, can be also modeled according
to our approach, but they are rather the exemption than the general case.

initiator acceptor

tcpConnector

CONComService

dd
n n

c

QoS

QoS

CNLComService
d

QoS

a)

b)

Figure 4.24: Generalization of communication services: (a) connection-oriented
(CON), (b) connectionless (CNL)

Figure 4.24 a) shows a connection-oriented communication service. Users of
the service get imported either as initiators or acceptors of a connection request
at the corresponding placeholders. Via this collaboration pattern, two users can be
bound late into a communication context. The typed binding models all QoS of the
communication path betweeninitiator andacceptor. Users ofCONComService do
not only need to have a port that connects them to portc but also a port for sending
and receiving data, a portd for the connection context. Figure 4.24 b) shows a con-
nectionless communication service. In connectionless communication, senders of
data have to provide the receiver’s address along with the data. The communica-
tion serviceCNLComService models QoS (like transmission latency, reliability,
etc.) and delivers the data to the right port associated with the address.

We also learned in this chapter how to model addresses, address spaces and
address associations. To model addresses, we introduced a typing concept to ports.
A port can be associated with a data class that captures the address type. Address
spaces are almost naturally determined by the actor class concept. (Typed) bind-
ings realize external address associations, data classes modeling an actors address
topology realize internal address associations. As an example, see figure 4.25, a
not further specified communication service gets hold of the IP address space.

4.5 Summary 157

IPAddr is the type of portc, IP1, IP2 andIP3 are a list of three possible address in-
carnations of portc. The internal topology of the address space is modeled by data
classIPAddrTop. A dashed line indicates to which port the topology refers to. The
DeMux actor models another address space “on top” of the IP address space; in
this case it represents an address space of ports. Since the de-/multiplexer is such
a standard component in telecommunication systems, we introduced the shape of
a trapezoid as a special notational symbol for it.

ComService

IPAddrTop

a

IPAddr : d

DeMux

{IP1,IP2,IP3}

Port : d {Porta,Portb}

Figure 4.25: Example for modeling addresses, address spaces and address associ-
ation

In this chapter, we solely talked about distribution. We were not really in need
of the notion of a layer, we even did not talk about horizontal or vertical com-
munication. Somehow, it looks like that this chapter has no link to the previous
chapter about communication types. The glue, that puts everything together and
relates independently modeled networks of communicating entities, is to be found
in the next chapter about layering.

158 Distribution

Chapter 5

Layering

In the previous chapter, we looked at each layer independently: A set of users
communicates to each other via the abstraction of a omnipresent communication
service. The question now is how several layers of communication networks are
interconnected and make up a layered system.

In section 5.1, we provide an algebraic definition for the notion of layering in
telecommunication systems. This definition is key to a simple but very powerful
technique to relate different communication networks to build up a more complex
architecture. In section 5.2, layering in communication systems is contrasted to the
traditional understanding of layering, which is investigated on ROOM’s layering
concepts. As a result some improvements to ROOM are proposed and introduced.
Some examples of layered communication networks are studied in section 5.3;
the examples are based on the material from previous chapters. In section 5.4, we
introduce the notion of planes to our architectural tool set. Section 5.5 closes this
chapter with a summary.

160 Layering

5.1 What is Layering?

The most striking observation regarding layers in telecommunications is that the
SAP is the key concept (see also figure 2.2 on page 32). OSI does not reveal how
this concept can be notated or visualized, nor does it formally define the semantics
of the SAP concept. Early examples of capturing the SAP concept can be found
in the standard of the Specification and Description Language (SDL) [ITU99a].
Since SDL was developed with a strong impetus of the telecommunication in-
dustry, the designers of SDL provided some application suggestions for typical
telecommunication problems. The SAP was no exception. The suggestion that
is given as an example for layering by service access “modeling” is described
in [ITU93g] and elaborated on in [EHS97]. It is distinguished between a service
user and a service provider but the service access is reduced to signal lists to spec-
ify the SAP interface. The behavioral part of the SAP is hidden in the process of
the service block owned by the service provider. No clear distinction is made be-
tween the internal interface logic of the SAP and the service logic. The example
indicates that although the SAP has been a well-known concept for quite some
time now (more than 15 years) it does not seem to be sufficiently understood as a
modeling concept, which requires some more attention and careful design.

5.1.1 Definitions in Literature

Layering is one of the oldest techniques in software engineering to structure a
system. Possibly the first, who made systematically use of layering wasDijkstra;
he used layering for the design of the THE operating system [Dij68]. Even though
“layering” is a standard term among system architects, the definitions and expla-
nations given vary in their details and leave a confusing notion of what layering
precisely is. A representative explanation for layering is the one from SHAW and
GARLAN [SG96, p.25]:

A layered system is organized hierarchically, each layer providing
service to the layer above it and serving as a client to the layer below.
[...] The most widely known examples of this kind of architectural
style are layered communication protocols. [...]

SHAW and GARLAN highlight that layering is a means to organize a sys-
tem. That seems to be the greatest common “divisor” in literature. Some au-
thors interpret the service relationship as a “use” dependency between layers,
see e.g. [HNS00]. Opinions vary about the kind of organization: Is it hierarchi-
cal (what does it mean?), is it abstracting (see e.g. [OMG01]), or something else
(see e.g. [CBB+03])?

5.1 What is Layering? 161

Interesting is that communication systems are regarded as a standard example
of layered systems. As a matter of fact, reading e.g. TANENBAUM [Tan96, p.17]
sounds familiar with the quote above in mind:

[...] most networks are organized as a series of layers or level, each
one built upon the one below it. [...] the purpose of each layer is to
offer certain services to the higher layers, shielding those layers from
the details of how the offered services are actually implemented.

We believe this comparison, layering in communication systems and layering
as a structuring principle, to be wrong. Subsequently, we will provide a mathe-
matical definition about what layering in a communication system is and contrast
this to layering as a organizational means as it is used in ROOM. The essence is
that “layering” in communication systems is a refinement relationship, whereas
layering in the traditional, the organizational sense is a kind of “use” relationship.

5.1.2 An Algebraic Model of Layering

For mathematical treatment, we break our problem (What is layering?) into its
constituting building blocks. For the sake of lesser complexity, we neglect network
configuration and set-up and ignore the dynamics of establishing and releasing
complex connectors. Instead, we assume a network to be static, so that a set of
users communicate to each other directly via complex connectors. That means, our
mathematical formalism can be linked up with the formal model of the preceding
chapter about distribution. Furthermore, we restrict our consideration to only two
communicating parties.

In the preceding chapter, we viewed each network of communicating entities
independent of any other network of communicating entities. The notion oflay-
ering sets two communication networks in context and relates them in a specific
way. Figure 5.1 schematically picks up the situation. There are two communica-
tion networks composed of two entitiesL′ andL′′ with an interconnecting complex
connector in the middle. The upper communication network is said to constitute
layer(N), the lower communication to constitute layer(N − 1); the layer deno-
tation is used as an index.

Figure 5.1 shows how layering works according to OSI RM and the TCP/IP
RM. The diagram serves as a basis for the subsequent discussion. We mainly use
OSI terminology, see section 2.1. Compare figure 5.1 also to figure 2.2 (page 32);
both are closely interrelated.

In the general case, the layer(N) peer entities send and receive PDUs (Pro-
tocol Data Units) over a complex connectorC. So do layer(N − 1) peer entities
over a complex connector̂C. If layered, the upper complex connectorC is taken

162 Layering

C

A”A’

L’N L”N
PDUN PDUN

ĈL’N-1 L”N-1

SDUN-1(PDUN) SDUN-1(PDUN)

PDUN-1(PDUN) PDUN-1(PDUN)

P’ P”
Figure 5.1: A schematic model of layering according to OSI RM and TCP/IP RM

out from the scenario.The PDUs sent and received from layer(N) entities are
redirected via a layer adaptorA. The layer adaptors take care of the conversion
of a PDU to one or more SDUs (Service Data Units) and vice versa. A PDU can
be broken up into several SDUs in case of PDU fragmentation. In one direction,
from top to bottom, the SDUs are fed to the lower layer entity, the lower layer
entity takes the PDU, packages it into a PDU of the lower layer and sends it over
the lower layer complex connectorĈ to the other side. In the opposite direction,
bottom up, the upper layer PDU is retrieved from the lower layer PDU and handed
over to the upper layer entity inside an SDU.

This is how OSI RM and TCP/IP RM, respectively, send data from one upper
layer peer entity towards another upper layer entity via a lower layer communi-
cation network. If one compares the schematic model with figure 2.2 (page 32),
the CEP is implicitly represented by the interface between the layer entity and the
complex connector; and the SAP is implicitly represented by the interface between
the converter component and the layer entity.

Be aware that figure 5.1 shows two different but complementary snapshots of
a layered system. One snapshot is the layer(N) network model with its complex
connectorC. The other snapshot is the combined layer(N)/layer(N − 1) model
with the complex connectorC being removed and replaced by the lower layer
network model. We will stick to this “two in one” drawing style also in subsequent
diagrams.

Mathematical Model of Layered Distributed Communication

To further simplify the model, we aggregate the lower layer entity and its related
adaptor. As a matter of fact, the adaptorA belongs logically to the upper layer.
Aggregating the adapter with the lower layer entity narrows the layer model down
to PDU interfaces and hides SDU interfaces; this eases our considerations. The

5.1 What is Layering? 163

aggregation component is labeled with aP. The letter has been chosen intention-
ally: usually, the peer componentsP′ and P′′ (more precisely, the components
L′

N−1 andL′′
N−1) implement a communicationprotocol1. Furthermore, we remove

the SDU/PDU comments, which indicate the meaning of the timed stream, and
replace them by more abstract names for the channels. Finally, we get rid off the
layer (N) entities, since they are sufficiently abstracted by the interface of the
complex connector. The resulting model is shown in figure 5.2.

C

P”P’

Ĉ

I’
I”O’
O”

I’
O’ I”

O”^
^

^
^

Figure 5.2: Mathematical model of layered distributed communication

The list of input channels represented byi′C are of typeI ′
C, for the channels

o′′C there iso′′C : O′′
C etc. The concatenation of the input channel listsi′C andi′′C is

denoted byiC and is typed byIC, the concatenation of the type listsI ′
C andI ′′

C. The
same conventions apply for the output channels ofC and the input/output channels
of Ĉ. As introduced above, the complete list of channel/type pairs is abbreviated
by I andO for C, and Î and Ô for Ĉ. I is composed of the concatenation of
the lists of channel/type pairsI = I ′ _ I ′′, with “_” being the concatenation
operator. Analogously,̂I = Î ′ _ Î ′′, and so on.

At their level of abstraction, the syntactic interfaces of the specifications of the
complex connectorsC andĈ can be defined as follows:

C ∈ (I ′ � O′′) ∪ (I ′′ � O′)

Ĉ ∈ (Î ′ � Ô′′) ∪ (Î ′′ � Ô′)

Here, we assume that the complex connector decouples the direction of message
transfer. For most cases, this is a sufficient approximation. In a more complicated
model the input e.g. of any channel ofI ′ might influence the output on any channel
of O′ (e.g. electromagnetic interference). The definition can be extended accord-
ingly and is expressed quite densely by:

C ∈ (I � O) (5.1)

1Or protocol protocolaccording to chapter 2.

164 Layering

Ĉ ∈ (Î � Ô) (5.2)

The protocol componentsP′ andP′′ per sehave to realize a complex interwork:
messages have to be processed at the connector interface and, concurrently, re-
quests from or notifications to the upper layer have to be handled.

P′ ∈ ((I ′ _ Ô′) � (Î ′ _ O′)) (5.3)

P′′ ∈ ((I ′′ _ Ô′′) � (Î ′′ _ O′′)) (5.4)

The arrangement ofP′, Ĉ, andP′′ is a form of composition we calledmutual
feedback, P′ ⊗ C⊗ P′′.

The first important statement about the relation of layers we can formulate is
that the complex connectorC and the layer(N−1) compositionP′⊗Ĉ⊗P′′ share
the same syntactic interface. Additionally, we have to put demands on a specific
sort of semantic relationship which we introduced asbehavioral refinement. The
fact that the behavior ofC can be substituted by the compositeP′, Ĉ, andP′′ is
now adequately formulated by the requirement

C (P′ ⊗ Ĉ⊗ P′′) (5.5)

Furthermore, the protocol specification given byP′⊗P′′ has to fulfill a specific re-
quirement: any communication history fed in at the input ofP′ (I ′ in equation 5.3)
is retrieved at the output ofP′′ (O′′ in equation 5.4) and vice versa (input atI ′′ and
output atO′). Only a time delay might occur. This requirement is expressed by the
identity relation.

P′ ⊗ P′′ = Id (5.6)

TheidentityId can be formally described by a component with two input channels
a andb, two output channelsa′ andb′, and the requirement that

a = a′ ∧ b = b′ (5.7)

The identity specification demands that any input stream is retrieved at the out-
put neglecting time shifts. The overline stands for the untimed variant of a timed
stream, where all ticks are simply being removed. Thereby, delays of messages
become irrelevant.

The identity requirement is extremely minimalistic but condenses general de-
sign principles of communication protocols. Equation 5.6 and 5.7 state that mes-
sages must be conveyed orderly, i.e. in a deterministic manner, with respect to their
interfaces towards the upper layer. Assumed that we principally cannot restore the
chronological order of messages at the destination, the destination must have an
infinite number of independent, conflict-free states to process messages. Such a
machine is of no practical use in communications. Thinkable is only a protocol

5.1 What is Layering? 165

that has a finite number of independent space states, between which chronological
ordering plays no role. Though, within each state space message determinism is
demanded. This is a theoretical option e.g. for control-oriented protocols such as
the Gateway Control Protocol (GCP) [ITU00] and would require to formulate sev-
eral identity relations for each independent protocol part. The practical use may
be limited.

Some protocols offer the possibility to deliver data messages in an unordered
fashion, see e.g. the Stream Transmission Control Protocol (SCTP) [SXM+00].
The “unorder” option is not in opposition to the identity condition. Despite un-
orderly delivery, the message order is determined e.g. by inband sequence num-
bers. Message reordering is left to the protocol user part. ComponentA in fig-
ure 5.1 is responsible for that in our model and covered by the identity condition.

A basic design principle of communication protocols is message encapsula-
tion: higher level PDUs are encapsulated in lower layer PDUs, see also figure 5.1.
We do not formulate any requirements on that, because the identity relation en-
ables but does not enforce PDU encapsulation; in fact, the identity relation de-
scribes a more generic form of protocol packaging, which includes package seg-
mentation and compression.

To summarize, equations 5.1-5.6 above describe a mathematical model of lay-
ering; they form a set of requirements on four components, which – if fulfilled –
state thatC can be regarded as a complex connector of a communication layer and
thatC can be refined byP′, Ĉ, andP′′. Ĉ reflects the lower layer complex con-
nector,P′ andP′′ realize a communication protocol fulfilling the identity relation.
We learned about the importance of the complex connector as the link between
distributed communication entities; an aspect that is not made clear by OSI RM
or any other reference on layering. As we will shortly see, this insight has severe
consequences on the abstraction techniques that can be used to model communi-
cation systems.

5.1.3 The Abstraction Hierarchy and Implications on Archi-
tecture Design

In this subsection, we investigate the main consequence of layering: that layering
is about abstraction. We will explain why layering leads to an abstraction hier-
archy. As a next step we point out the consequences of the abstraction hierarchy
on the architecture design of communication networks. When the interfaces of a
specification are syntactically and semantically preserved, it is a matter of per-
spective to interpret a refinement relationship from a black-box view or from a
glass-box view. Applied on the fundamental refinement relationship of the com-
plex connector to the “lower” communication network (equation 5.5) we will end

166 Layering

up with either anode-centricdesign view or anetwork-centricdesign view. Both
views lead to completely different but related approaches on systems design.

The Abstraction Hierarchy

As was introduced, layers abstract levels of communication networks, each level
being concerned with its own domain of functionality and service of peer com-
munication. The layers are strictly separated; nevertheless, they are related in an
abstraction hierarchy.

If we rewrite formula 5.5 using indicesN , N − 1 etc. to mark their layer
relation, the recursive nature of formula 5.5 gets much clearer.

CN (P′
N−1 ⊗ CN−1 ⊗ P′′

N−1) (5.8)

ComponentCN−1 is refined by and thus can be substituted by the next layer
P′

N−2 ⊗ CN−2 ⊗ P′′
N−2 and so on. The recursion can be interpreted as a hier-

archy that relates an arbitrarily selected complex connectorCN to a chain ofk
(k ≤ N) protocol entities completed by another complex connectorCN−k. The
situation is illustrated in figure 5.3.

P”N-k P’N-k CN-k

P’N-1 P”N-1

CN

… …

a a

b1 b1b2 b2

Figure 5.3: Layered model: the abstraction hierarchy

Why does figure 5.3 reflect an abstraction hierarchy? In other words, why is
CN more abstract thanCN−k and not the other way around? The answer is im-
plicitly included in the identity condition of peer protocol entities. The equation
P′

N ⊗ P′′
N = Id describes an ideal transmission case, meaning thatCN is re-

placed by a “short circuit”. If a message (PDU)a gets injected at the upper (or
outer) layer interface ofP′, the identity relation guarantees retrieval ofa at the
upper layer interface ofP′′. On the inner peer-to-peer communication interface,
the protocol entities support another set of PDUs, sayb1, b2. Messagea can be

5.1 What is Layering? 167

only restored at the receiver’s side, if the information to reconstructa is trans-
ported viab-messages. Message fragmentation and compression might be used
for that purpose. The same argumentation holds for PDUb1, if it gets delivered to
the next lower protocol pair. What can be seen from this scenario is that more and
more information is to be processed by the protocol entities deeper down in the
layer hierarchy. While we send, for instance, a fax over a virtual call connection,
hundreds of thousands of bits in form of electric pulses are actually transmitted
over a copper cable. The involved chain of protocol layers uses data compression
and redundancy mechanisms to ensure that messagea, the fax, remains intact.
The complex connectorCN (the call in our example) abstracts away all the lower
level details of message processing but preserves the interface behavior. In that
sense, the layered communication model in figure 5.3 represents an abstraction
hierarchy. Notably, we provided a fully algebraic explanation for layered commu-
nication hierarchies.

The picture of an abstraction hierarchy might be a bit misleading, though.
Communication layers are by no means more or less complex or complicated than
other layers are, no matter of where they reside in an abstraction hierarchy. Each
communication layer is a system expert domain of its own with its own dimen-
sion of networking problems and solutions. It is not necessarily the layer as such,
which defines an inherently degree of abstraction, it is the assigned purpose of a
communication layer in a stack. This explains, why the abstraction levels of dif-
ferent protocol stacks are hard to compare. That is the reason why the comparison
of OSI RM and the Internet Architecture is notoriously problematic and difficult.

Node-Centric Design View

The principle of black-box refinement sets two different component arrangements
into a replacementrelationship ruled by some syntactical and semantical condi-
tions on the interfaces. In our case it is a communication network that replaces the
“upper” complex connector as long as the conditions described on page 162 ff.
are fulfilled.

If we apply this principle on the abstraction hierarchy or – to simplify our
considerations – on the component-oriented OSI model, see figure 5.1, the up-
per complex connector gets replaced by a distributed communication system; two
piles of protocol components plus the “lower” complex connector remain, see
figure 5.4. We group the protocol piles on each side in order to keep the simple
model of an entity-connector-entity communication network,P′

N,N−1 on the left
hand andP′′

N,N−1 on the right hand side.
What we end up with is the typical OSI-like viewpoint on layered distributed

systems: nodes of protocol stacks with the nodes connected by some communica-
tion link. This node-centric design approach has a long tradition in the telecommu-

168 Layering

P’N P”N

CN-1P’N-1 P”N-1

P’N,N-1 P”N,N-1

Figure 5.4: Node-centric design approach

nication community and is the dominating design paradigm for the architecture of
communication systems. Network design is to a large extend equated with the de-
sign of protocol stacks. Diagrams of protocol stacks are typically used to present
an overview of even rather complex systems such as GSM (Global System for Mo-
bile Communication) or UMTS (Universal Mobile Telecommunications System),
see e.g. [Wal01].

While there is nothing wrong with a node-centric design approach, OSI’s dom-
inance in that respect led to a depreciation of the connection concept. OSI’s weak
support on the notion of “virtual” connections and the implicit idea of the abstrac-
tion hierarchy (in the sense presented) gives rise to some criticism. The author
noted that experts in the domain, if asked to locate the abstraction of a connection
in a protocol stack diagram, notoriously fail to relate complex connectors to the
right level in the protocol stack. For example, a complex TCP connector does not
relate to the TCP protocol layer (the provider level), it is the user of TCP such as
HTTP (Hypertext Transfer Protocol) [FGM+99] that uses a TCP connector as an
abstraction of TCP. Such mistakes indicate that the concept of a complex connec-
tor as an abstraction tool is definitely not used. It isnotcommon practice to cut off
protocol stacks at an arbitrarily level and abstract away the “lower” parts in form
of a complex connector and thereby shorten the protocol stack. By not doing so
developers deprive themselves of a powerful design technique.

Network-Centric Design View

The white-box principle of refinement sets two different component arrangements
into a nestingrelationship. In our case it is the “upper” complex connector that
hosts a complete communication network. As a result, all structural elements of
protocol components and complex connector remain existent; it is just that “in-
ner” networks are contained in the complex connector of the “outer” network, see
figure 5.5. The complex connector hides an infrastructure to the outside, which it

5.1 What is Layering? 169

unveils only by looking inside the connector.

P’N P”NCN-1P’N-1 P”N-1

CN

Figure 5.5: Network-centric design approach

It is amazing to note that a systematic use of the network-centric design ap-
proach is not established practice. There are almost no sources in literature that
nesting networks is an option nor did we find any convincing evidence in industry.
One rare example is SDL and its channel substructure concept [EHS97]; however,
these techniques have not been evolved to a systematic methodology in network
design. This is even more surprising, since a network-centric design approach is an
ideal technique for architects who aim to engineer networks not protocol stacks. It
enables the architect to stepwise resolve the granularity of a network architecture
and precisely formulate the requirements on the next network layer by means of
complex connectors.

Viewpoint Matters

If we look on the phases of system development, we see that both approaches
are of relevance and help significantly improve design and test of communica-
tion systems. It is a very natural way of viewing communication systems from
a network-centric standpoint in early design phases and to gradually shift view
towards a node-centric standpoint in implementation phases. To paraphrase the
key idea: communication systems are designed as networks but implemented as
nodes.

The abstraction hierarchy enables system architects, designers, as well as testers
to limit their focus of interest on a narrowed level of complexity of the respective
view.

170 Layering

5.2 Layering in ROOM

We already gave a brief introduction to ROOM’s layering concepts in section 2.3
(page 53 ff.). This section is based on that introduction but provides a more de-
tailed view on and a thorough discussion of ROOM’s layering conception.

5.2.1 Criticism on ROOM’s Interlayer Model

According to ROOM, layering is a modeling principle that structures the orga-
nization of a system in the highest form. To describe layers, ROOM takes over
the idea of OSI that all interaction between adjacent layers takes place through
discrete points on the interlayer boundary, namely the SAP. ROOM applies the
typed port concept to SAPs, thereby trying to harmonize interlayer and peer com-
munication interactions. The OSI-SAP is divided into two interface components,
a ROOM-SAP2, which is attached to the upper(!) layer, and aService Provision
Point (SPP), which is attached to the lower layer. As a consequence, an actor has
three categories of interfaces: ports represent peer interfaces, SPPs represent ser-
vice provisioning interfaces, and finally ROOM-SAPs represent service usage in-
terfaces. Together, these three interface categories define the type of an actor. Both
the ROOM-SAP and the SPP are connected by a communication channel called
layer connection. The ROOM-SAP is associated with a protocol P, and the SPP
is by definition associated with the conjugated protocol P∗, see figure 5.6. (Re-
member, the conjugated protocol P∗ has the same definition as P except that the
incoming and outgoing message sets are interchanged [SGW94, p.154].) Neither
the ROOM-SAP nor the SPP have an explicit graphical notation; the grey shaded
boxes in figure 5.6 are shown for explanatory purposes only. The layer connection
is symbolized by an arrow (with the arrowhead pointing to the “lower” layer) and
represents a collection of individual but not-notated ROOM-SAP to SPP links.

Layer (N)
SAP (protocol P)

SPP (protocol P*)
Layer (N-1)

Figure 5.6: Layers in ROOM, see [SGW94, p.201]

2The prefix “ROOM” has been introduced to clearly separate OSI-SAPs from SAPs in ROOM,
which are quite different.

5.2 Layering in ROOM 171

Even though we can widely agree on ROOM’s approach, we disagree on some
details. There are three major criticisms on the interlayer modeling approach: first,
ROOM introduces a confusing interpretation of the SAP concept by attaching it to
the service user; second, ROOM misses an important semantic constraint implied
by SAPs; and third, there is the lack of a proper notation for SAPs. The following
paragraphs explain the points mentioned in more detail.

(By the way, it goes without much saying that ports and ROOM SPPs/SAPs
are exclusive to each other: a port cannot be connected to a ROOM SPP/SAP.)

Confusing ROOM-SAP concept

As was elaborated on previously, an OSI-SAP belongs to the service provider and
not to the service user. The lifetime of an OSI-SAP is bound to the lifetime of
the service provider. In addition, any number of service users, who comply to the
SAP interface, can be connected to the SAP of the service provider. This is exactly
the converse of ROOM: The SPP in ROOM corresponds to the OSI-SAP. Never-
theless, the ROOM-SAP (on the service user side) specifies the interface protocol
even though it is the service provider, which defines and publishes its service inter-
faces; that is also how technical standards are describing interfaces. ROOM does
it the other way around and shows consistency with its recommendation to define
protocols from a client’s perspective for peer-to-peer communication. However,
this leads to further confusion in the SAP case. Properties like QoS and SAPI can
not be sensefully associated to the ROOM-SAP. Only a service provider can guar-
antee specific QoS and be addressed by an SAPI. However, the SPP is not prepared
to catch such properties either. In short, attaching a well-known concept like the
OSI-SAP to a service user or simply naming the interface component of a service
user “SAP” does not only confuse people familiar with telecommunications, it is
objectively wrong.

Insufficient semantic preciseness

SAPs are a port-like concept, but they are semantically different. The similarity is
that SAPs and ports can (but do not need to) be based on an homogeneous com-
munication model of interaction (e.g. message based protocols) [SGW94, p.200].
The difference is that SAPs are a structuring measure, they organize collectives
of actors communicating via ports into layers. That means that we have to intro-
duce a semantic rule saying that if two peer-to-peer networks are separated by an
ROOM-SPP/SAP pair, none of the actors is allowed to be connected to another
actor of the other network via ports. In other words, peer communication should
not bridge layers. The ROOM-SPP/SAP concept constraints how actors may com-
municate to each other via ports. It is this constraint that semantically introduces

172 Layering

peer-to-peer and interlayer communication.
In ROOM, it is possible to violate that semantic rule, see for example fig-

ure 5.7. In that figure a coordinator capsule is connected via ports to a layer 3, 2,
and 1 capsule; the coordinator via peer-relations bridges the layer connection of
the layer capsules. The reason for violation is that such semantics are not em-
bedded in the formal specification of the abstract syntax of ROOM, see [SGW94,
p.212ff.]. Maybe the lack of a plane concept (this is introduced in section 5.4)
enforced the authors to be less restrictive. SAPs/SPPs in ROOM prove to be a
qualifying concept, whichcan be used for the semantical intention of modeling
layers. The deficiency in semantics does not clearly separate port connections
from layer connections. Strictly speaking, ROOM fails with its claim that with its
support for layering, “layered system architectures become not only more explicit
and semantically precise, but also enforceable” [SGW94, p.194].

Layer3

Layer2

Layer1

Co-
ordinator

Figure 5.7: Coordinator capsule bridging layers, see [SGW94, p.208]

On the other side, ROOM is very strict on layering. No upper layer is allowed
to access any layer that is below its adjacent lower layer. In practice, system engi-
neers are wary of layering violations, but there are some circumstances in which it
is required to do so [Kes97, p.71f.]. In that sense, the SAP concept is less restric-
tive than layering is; there is no “upper” or “lower” layer but the roles of service
providers and users in any sort of arrangement. We see this as a benefit, others
might interpret it as a sacrifice to the imperfect world of design.

Lack of proper notation

ROOM argues that in most applications the number of individual interlayer con-
nections tends to be very large. That is why only an “embracing” notation, the
layer connectionsymbol, is introduced; a notational symbol for ROOM-SAP/SPP
connections is regarded as superfluous [SGW94, p.201f.]. We do not follow this
argumentation. We believe it to be meaningful to have a notation at hand for in-
dividual ROOM-SAPs and SPPs and their relationships. A modeler should be
equipped with this option as well. A suitable notation is proposed subsequently.

5.2 Layering in ROOM 173

The discussion and commentary on ROOM should be regarded as an improve-
ment proposal for the language. For clarification purposes note that SAPs (as
introduced above) are not just an extended version of ports. The SAP and the
port concept are rather specializations of the same base concept, which one could
for example call “boundary interface concept”. In contrast to the port concept,
the SAP concept additionally has attributes (QoS, SAPI) and puts semantic con-
straints on the use of ports. Since we would like to promote SAPs in the software
engineering domain as well, we do not demand strict OSI compliance and declare
the SAP attributes as optional.

5.2.2 Improvements to ROOM’s Interlayer Model

Two of the problems mentioned are easy to solve: To avoid confusions about the
ROOM-SAP and ROOM-SPP concept, we introduce slightly different conven-
tions about naming and message schema conjugation. While this is just a syn-
tactical issue, the semantics of ROOM’s interlayer model are not impacted. Sim-
ilarily, the introduction of a proper notation for interlayer details is uncritical to
the ROOM language. The remaining issue, insufficient semantic preciseness, is
something we need to discuss in further detail.

Improved Conventions

To avoid all confusions around the term “Service Access Point”, we drop it com-
pletely. We agree on the following conventions: the layer interface attached to the
service provider is calledService Provisioning Point(SPP); so far, nothing has
changed. The opposite layer interface attached to the service user is calledSer-
vice Using Point(SUP) instead of Service Access Point (SAP). By convention,
we will always define the message schema from the viewpoint of the SPP; the
SUP holds the conjugated message schema. If required, the SPP can be typed by
a data class. The data class represents theService Access Point Identifier(SAPI)
or, according to the new terminology, theSPP Identifier(SPPI). As we learned in
the previous chapter, the SPPI can be an IP address, an TCP/UDP port or anything
else appropriate.

From now on, we will use the new terminology and talk about SPPs and SUPs.
Remind yourself that this is just a terminology issues and not a language change.
The reader can always map back the SPP to a ROOM-SPP and the SUP to a
ROOM-SAP and swap the message schema conjugations, if needs be. Readers,
who are still in favor of a SAP concept in the OSI sense, may regard the SPP and
the SUP as a conceptional unit representing the OSI-SAP.

So far, a layer connection is not very much different from a binding. The differ-
ence only is that there are defined naming conventions for the interfaces involved

174 Layering

in a layer connection: SPPs correspond to “black” ports, SUPs to “white” ports.
Otherwise, SPP and SUP also have a reference name and a replication factor. Just
the conjugation indicator has become superfluous because it is predefined for SPP/
SUP.

Improved Notation

Due to their similarity, we graphically notate SPPs and SUPs like ports, but use a
diamond symbol instead: The SPP is visualized by a “filled” diamond symbol, the
SUP is visualized by an “empty” diamond symbol. The layer connection between
the SPP and the SUP is visualized by a line like a binding contract. Figure 5.8 is a
re-drawing of figure 5.6 using the improved notation.

Service User SUP (protocol P*)

SPP (protocol P)Service Provider

Figure 5.8: Notation for SPPs, SUPs and layer contracts

If an actor class is nested inside another actor class via an actor reference (see
figure 2.14 on page 58), the SPP and the SUP are treated in a special way: SPPs
can beselectivelyexported to the container actor class via an export connection,
whereas unfulfilled (i.e. unbound) SUPs are exportedautomaticallyand become
port of the container actor class’ interface.

Selectively exporting SPPs is semantically the same as connecting the “inter-
nal” SPP to an “external” relay SPP. We will notate SPP relaying in exactly the
same way as we do relaying for ports, see figure 5.9. One SPP is exported, the
other is not.

For SUPs it does no harm to ROOM if we demand manual export of unfulfilled
SUPs and leave it to the model checker to validate ifall SUPs have been relayed
inside-out or bound to an SPP. The effect is the same as for automatic SUP export,
we just prefer the “make it explicit” style, see figure 5.9. You can see this diagram
as an illustration of figure 2.14 (page 58) in explicit notation.

It is a matter of the presentation level to explicitly show SPPs and SUPs, their
exports and interconnections or to change the granularity of visual information, re-
move the SPPs and SUPs symbols and show layer connection symbols (the arrow)

5.2 Layering in ROOM 175

A

a

Relay SPP

Relay SUP

Figure 5.9: Explicit export notation for SPPs and SUPs

only. The point is that we specify our models explicitly without any ambiguity and
leave it to a computer aided tool, to change the presentation level. Again, this is no
essential change to ROOM but just an issue of the visual specification philosophy.

Semantic preciseness

Peers of ports and SPP/SUP pairs seem to be very similar and conceptionally
close, especially since we harmonized the notational conventions. So, where is
the difference?

The semantic difference between layer interfaces (SPP, SUP) and peer inter-
faces (ports) is subtle but important. A port, no matter if conjugated or not,can
be butmust notbe bound to another port (external end port or relay port) or the
behavior component (internal end port). Ports impose no artificial constraints. Not
so SUPs. An SUP of an actor referencecan notbe connected to the behavior com-
ponent of the composing actor class butmustbe exported or bound to an SPP.
That means, an actor having a SUP communicates via the SUP to another actor
that is outside the scope of the former actor’s nesting context. Nesting in ROOM
is strict containment, so nesting is related to the lifetime context of an actor. If an
actor is destroyed all its containments are also destroyed. In other words, an actor
having a SUP communicates via the SUP to an actor in another lifetime context.
SUPs have a structural and a run-time implication.

It is this simple rule (“SUPs must be exported or bound to complementing
SPPs”) that basically distinguishes a port from a SUP. And it is this simple rule
that is claimed to be at the heart of the notion of layering – at least if we follow
ROOM’s approach. The consequence is that SUPs enforce a “higher” structural
organization than ports do. SUPs separate nesting contexts or, better said, contain-
ment contexts. To quote SELIC et al. [SGW94, p.195]:

176 Layering

The principal difference [to containment] is that, in layering, the up-
per layer doesnotcontain the lower one.

This is a fairly reasonable condition for layers, but possibly not a sufficient
condition. In addition, SELIC et al. say [SGW94, p.194]:

Layering is a strictlyhierarchical relationship. An upper layer’s im-
plementation depends on the lower layer (but not the other way around).

By definition, the actor class having the SUP of a layer connection is said to be
the “upper” layer, the actor class holding the SPP is said to be the “lower” layer.
Unfortunately, the authors of the ROOM book do not install further semantics
for the notion of “depends on”. Two actors bound together via a SPP/SUP layer
connection are not more or less dependent from each other than two actors via a
binding contract are. It remains unclear, on what a “hierarchical relationship” is
based upon.

Here, we can help out. In chapter 3, “Types of Communication”, we introduced
the notion of control, derived three basic types of communication relationship
(control-oriented, protocol-oriented and data-oriented) and proposed a notation.
This classification scheme can be taken over for SPPs and SUPs. An SPP can be
control-oriented or data-oriented, so can be the SUP. If we by definition say that
it is never the SUP that solely exerts control, we can distinguish three variants of
layering, see figure 5.10. Many people equate layering with control-oriented lay-
ering, but that is an arbitrary limitation. The notation is aligned with the notation
used in chapter 3.

a) b) c)

Figure 5.10: Communication types between layers: (a) control-oriented,
(b) protocol-oriented, (c) data-oriented

In ROOM, layering is a synonym for theverticaldirection of communication.
This naming convention is common. Usually, the communication between layers

5.2 Layering in ROOM 177

is assumed to be ideal, so case (b) in figure 5.10 is of little practical relevance,
but still it is an option. This said, the basic patterns for vertical interaction in a
communication system shown in figure 3.24 (page 111) still hold valid. We just
have to apply the new notation and replace ports by SPPs and SUPs in order to
indicate vertical direction of communication, see figure 5.11. Meanwhile, we have
learned that there is no need to connect the data port of theConnection directly to
the “lower” layer; one can use the import feature of ROOM to plug-in the service
user in another context for data-oriented transfer. For that very reason, we leave
the data port of theConnection unbound in figure 5.11

Connection

Service
User

Service
Provider

Service
User

Service
Provider

ResourceModel

Service
User

Service
Provider

a) b) c)

Figure 5.11: Patterns of vertical communication in a communication system:
(a) connection-oriented, (b) connectionless, and (c) resource control services

Layering Semantics

As was mentioned, on the one hand, ROOM is very strict on layering: No upper
layer is allowed to connect to any layer that is below its adjacent lower layer. On
the other hand, ROOM is very relaxed on layering: Bindings via ports may break
the rule of strict layering. Both aspects are summarized in figure 5.7.

We criticised both aspects as inappropriate for modeling (tele)communication
systems. In contrast to ROOM, we will not insist on strict layering but demand
(yet not enforce for the sake of flexibility) that there is no chain of bindings that
principally enables one layer to communicate with another layer via ports. That
is the real reason why we do not permit the data port of the service user in fig-
ure 5.11 a) being directly connected to the service provider. Importing the whole
“upper” layer or a part of the upper layer inside a lower layer puts the upper layer
(part) in an additional run-time context; but that does not impact the composition
and life-time constraints we identified as key for layering.

178 Layering

In comparison to figure 5.7 we summarize the new layering semantics in fig-
ure 5.12. We intentionally have drawn the layered architecture inside another actor
class to indicate that layering can appear on any level of granularity: on a system
architecture level as well as on a “microarchitecture” level.

Layer2 Co-
ordinator

Layer3

Layer1

only one of these
bindings is permitted

ActorClass

Figure 5.12: The semantics of layering exemplified

Beyond doubt, there are cases in which we need to “bridge” layers similarly
like the Coordinator actor class does. But if we do not promote the use of ports
between layers, we need something else instead. In telecommunications, this prob-
lem has been solved by the notion ofplanes. A plane is a structuring means that
embraces a consistent set of layers. We could structure figure 5.12 into two planes:
one plane consists of the layer setLayer3, Layer2 andLayer1; the other plane con-
sists of theCoordinator as the upper layer and the conglomerate ofLayer3 to
Layer1 as the lower layer. We will introduce planes as an extension to layers in
section 5.4.

5.2.3 Layering versus Layering

How is ROOM’s understanding of layering related to the algebraic model of lay-
ering we presented at the very beginning of this chapter? Not at all, to be tough; a
little, to be modest and academically correct.

Layering as an Usage Relation

When we talked about SPPs and SUPs, we agreed on the terminology to say that
the actor class having the SUP of a layer connection is said to be the “upper” layer,

5.2 Layering in ROOM 179

the actor class holding the SPP is said to be the “lower” layer. Sometimes we use
role names instead and call the “upper” layerservice userand the “lower” layer
service provider. Be aware that these are just naming conventions. It is important
to realize that upper/lower and service provider/user are by no means indications
for levels of abstraction. As CLEMENTS correctly points out in [CBB+03, p.95ff.
], layering is not about abstraction. Layering is a special kind of usage relationship,
which can be characterized byallowed-to-use. Each layer is knowledgable about
its own service domain but completely ignorant of other service domains. There
is nothing that makes one layer an abstraction of another layer; on the opposite,
two layers complement each other in an elegant symmetry [CBB+03, p.96]. An
allowed-to-userelation imposes a strict or partial ordering, not more and not less.
Layering is definitely not about abstraction, rather about separation of concerns.

A similar comment goes for so-called muti-tiered architectures [TvS02]. Multi-
tiered architectures slice a system architecture in application or service domains,
e.g. in a database, a GUI client, and a server, and are very common for business
and enterprise applications. Still, it is a kind of “use” relationship that ties the
parts together.

Layering as Communication Refinement

When telecommunication engineers talk about layering, they mean something
completely different. Their notion of layering is algebraically captured in the
mathematical formalism above. Layering in communication systems is a matter
of refinement, or more accurately a matter ofbehavioral refinementas defined in
definition 2.3 on page 67. Since we added an important requirement to behavioral
refinement for communication systems, namely the identity relation (formula 5.6),
we prefer to call this sort of refinementcommunication refinement.

Communication refinement truly is about abstraction in a system as was elab-
orated on in section 5.1.3. More precisely, the abstraction refers to the complex
connector and not to the communicating entities of a communication network.
A complex connector is an abstraction for a communication service that can be
detailed (refined) by a complete communication network.

How Communication Refinement relates to Usage Layering

Communication refinement and its relation to the notion of layering in the ROOM
sense becomes clear, when one looks at the process of stepwise refinement, relat-
ing the abstract snapshot to the refined snapshot. Refining a complex connector
(abstract snapshot) leads to a cascade of communicating peers and another com-
plex connector at the “bottom” (refined or concrete snapshot), see figure 5.3. The
interesting observation is that the communication protocolsP′

N−1 andP′′
N−1 of one

180 Layering

communication network level are in a usage relationship to the next “lower” com-
munication protocol pairP′

N−2 andP′′
N−2. Previously, the communicating proto-

col peers wereusinga complex connector; now they areusinga pair of protocol
entities.

This usage relationship corresponds to the aforementionedallowed-to-usere-
lationship. It also corresponds to what we denoted byvertical communication. It
is all the same. Consequently, we use SPPs and SUPs between communicating
entities of different network levels when the abstraction of a complex connector
is resolved.

The reader may now understand why figures that show stacked communication
layers in a way figure 2.4 (page 37) does are totally misleading if not wrong. The
transport layer is not a layer on top of the network layer, because the transport
layer is not justallowed-to-useservices of the network layer. We have to be more
accurate and precise and say that the communicating entities of the transport layer
can be layered atop communicating entities of the network layer, provided that
the complex connector of the transport layer is refined to elements of the network
layer. As we can see, the termlayer is heavily overloaded, and one has to be
careful with its use. That is why we try to avoid speaking of a transport or network
layer and say transport network and network network instead.

Communication Refinement in ROOM

The notion of refinement is to some extend covered by ROOM’s capability to
mark an actor class as substitutable. However, the notion of communication re-
finement cannot be adequately expressed in ROOM, even not by an extension to
the ROOM language, since the identity relation implies constraints on the data
flow in a model. ROOM is not an appropriate language that can reason on such
a low level of detail. If important, one may choose another language and another
tool, preferable a language which is based on an algebraic foundation like FO-
CUS [BS01]. From an engineering point of view, such reasoning is not necessar-
ily required. Simply speaking, the identity relation equates to the demand of using
protocols in a communication system. This demand is, so to speak, by definition
fulfilled in communication system design. So, communication refinement is noth-
ing we need to be notationally worried about. More vital is that system architects
learn to think in abstract and concrete snapshots and relate both views. We regard
this as a methodology issue.

5.2.4 Node-Centric and Network-Centric Designs in ROOM

We will end this section about layering in ROOM with a brief note on node- and
network-centric architecture designs in ROOM. Both ways of utilizing communi-

5.2 Layering in ROOM 181

cation refinement have different consequences on the architectural design.

Node-Centric Design in ROOM

Figure 5.13 shows how communication refinement is resolved with a node-centric
design approach in mind. The complex connectorCN betweenP′

N and P′′
N is

refined by a communication network consisting of two “lower” communicating
protocol entities,P′

N−1 andP′′
N−1, andCN−1. If node-centric, the actor pair on

the left hand side and the actor pair on the right hand side are embedded in the
context of another actor each. Consequently, layering (now referring to layering in
the ROOM sense) is inside the actorsP′

N,N−1 andP′′
N,N−1, which are also called

nodes. Each node hosts a stack of protocols. On a coarse granular level, we see
the same schema again: two entities (here nodes) communicating via some sort of
complex connector.

P”NP’N CN

CN-1P’N-1 P”N-1

P’N P”N

P’N,N-1 P”N,N-1identical
message
schema

identical
message
schema

Figure 5.13: Node-centric communication refinement in ROOM++

The most striking observation in comparison to figure 5.4 is that we have a
change in the kind of interface: a node-centric architecture style turns horizon-
tal interfaces of remote peer communication into vertical interfaces inside nodes.
That means, the architecture semantics of the interface change but not its syn-
tax. The lesson to learn is that such transformations may change the architectural
meaning of interfaces.

182 Layering

Network-Centric Design in ROOM

If communication refinement is resolved with a network-centric design approach
in mind (see also figure 5.5), the interna of the complex connectorCN are replaced
by a communication network, see figure 5.14. This is also calledimplementation
refinement. In [CBB+03, p.192] the definition is: “Implementation refinement is
a refinement in which many or all the elements and relations are replaced by new,
typically more implementation specific, elements and relations.” Here, we have to
read the word “implementation” as “architecture implementation”. The previous
abstraction ofCN is made concrete; this concretization still follows the schema of
two entities communicating via a complex connector.

P”NP’N CN

P’N-1 P”N-1CN-1P’N

CN

P”N

Figure 5.14: Network-centric communication refinement in ROOM++

In network-centric design, horizontal communication is preserved. Complex
connectors are abstractions for complete networks, which may be made concrete.

Conclusion

As we can see, the simple pattern of two or more communicating entities, which
are connected via a complex connector, is the reiterating schema in the archi-
tecture design of communication systems. The whole point of system architecture
design is to resolve abstractions of complex connectors by suitable concretizations
of communication networks. With the approach presented, modeling communica-
tion systems is effectively based on a simple but powerful abstraction technique.
And that is how it should be. The system architect should focus on the technical
domain and solve technical problems – that is what the architect is paid for and
should spend most of his or her time on. Our approach makes it easy to introduce
abstractions wherever needed in a system model, so that the architect can really

5.2 Layering in ROOM 183

concentrate on the vital aspects of concern and express these with the features
provided by ROOM.

We do not want to express any preference for the node-centric or the network-
centric viewpoint on system architectures. Both are important. Therefore, in the
next section, we just show how communication networks can be related to each
other via the complex connector for the purpose of communication refinement,
but leave the choice to the system architect to go for a node-centric or a network-
centric approach.

184 Layering

5.3 Layered Communication Networks

In the following we demonstrate how communication networks can be related to
each other by communication refinement. That means, we take the results from
the previous chapter, in which we looked at each communication network as an
independent, self-contained unit, and set it into relation to another independent,
self-contained communication network.

5.3.1 Layered Networks exemplified on TCP

For TCP, we set the TCPusercommunication network, see figure 4.19 on page 151,
into relation to the TCPprovider communication network, see figure 4.22 on
page 154. The basic approach is straight forward: The complex connectorTCPU-
ComService is removed and substituted by the TCP provider network.3 The result
is shown in figure 5.15.

Connection
TCPUser

c

d

a

IPAddr : c

TCPUDeMux

{IP1,IP2,IP3}

TCPPort : c {Porta,Portb}

user n d

Protocol

TCPProvider

Discriminator

PI : t
{6}

PI : u
{17}

PComService

IPAddrTop

IP
Ad

dr
: d

{IP
1,

IP
2,

IP
3}

QoS

Figure 5.15: The TCP user network and the TCP provider network set into relation

There remains little to say about the diagram, since communication refinement
is almost a mechanical process of substituting one by another as long as the inter-
face syntax is preserved. Though, two minor issues may be worth mentioning: the
change ofTCPProvider and the “relaying” of the IP address space.

3Now we can see that it makes sense to regard theTCPUComService as a complex con-
nector from a methodology point of view.TCPUComServie is a very good example that a
complex connector may be decomposed into other complex connectors detailing the functioning
of communication.

5.3 Layered Communication Networks 185

Remarks about the TCP Provider

The actor classTCPProvider has experienced a slight change: Portd has been
moved inside the actor class and is now attached to the imported actor reference
user. There are two reasons for this change: (1) To enable the option for a node-
centric grouping of actor classes, we have to prepare the model for layering in
the ROOM sense. As we discussed previously, putting portd of TCPUser into
another context of use via an actor import is the most elegant solution to preserve
layering semantics of ROOM. (2) The actor import is also the most expressive
means to show that theTCPUser has on one hand a control-oriented relationship
(relayed by the demux) towards theTCPProvider, but is put on the other hand
in a data-oriented communication context by theTCPProvider. This is what the
architecture diagram says and that is what actually happens; it would be a severe
loss of architectural relevant information if one would not use this powerful means
of expressing processing relations.

Remarks about the IP Address Space

Another interesting observation is that the IP address space at portc of TCP-
Provider has “survived” the substitution process. As a matter of fact, communica-
tion refinement does not impact address spaces, though it might be an unexpected
effect many system architects of communication systems are not aware of. The
TCPProvider is addressed via a cascade of IP address and Protocol Identifier (PI).
However, from the viewpoint of aTCPProvider, the TCPUser is identified and
located via an IP address and a TCP port number. Of course, there is a relation
between the IP addresses, which is established during registration procedures at
the start-up phase. Usually, theTCPProvider “sees” the user under the same IP ad-
dress as it has been addressed by thePComService. We may call this structuring
of addressesaddress relaying.

5.3.2 Layered Networks exemplified on UDP

For UDP, the situation looks very similar. We set the UDP user communication
network, see figure 4.21 on page 153, into relation to the UDP provider com-
munication network, see figure 4.22 on page 154. The result of communication
refinement is shown in figure 5.16 without further commentary.

Actually, the diagrams in figure 5.16 and figure 5.15 could be also be com-
bined in a single diagram; it is just the protocol identifier, which discriminates the
TCP part and the UDP part.

Once getting accustomed to reading ROOM diagrams including our exten-
sions, it is quite much architectural information we supply on a visual level. This

186 Layering

UDPUser

d

a

IPAddr : d

UDPUDeMux

{IP1,IP2,IP3}

UDPPort : d {Porta,Portb}

UDPProvider

Discriminator

PI : t
{6}

PI : u
{17}

PComService

IPAddrTop

IP
Ad

dr
: d

{IP
1,

IP
2,

IP
3}

QoS

u

Figure 5.16: The UDP user network and the UDP provider network set into rela-
tion

is very much in contrast to raw box-and-line diagrams in SDL and other ADLs.
Our approach also reveals the power of abstraction in form of complex connectors.
Diagrams such as in figure 5.16 and figure 5.15 are hard to develop from scratch;
but it is significantly simpler to develop the service user and the service provider
part independently before setting them in relation of communication refinement.
In addition, complex connectors allow the system architect to cut off the level of
resolution at any point of his or her will.

5.3.3 Layered Networks exemplified on MGCP

Up to now, our models primarily focus on the aspect of distribution and layering
(communication refinement) for connection-oriented and connectionless commu-
nication services. However, latest since the advent of UMTS and the physical split
of the control and user plane (see also chapter 1) resource control can be also sub-
ject to distribution and – in consequence – also subject to layering.

That means, horizontal communication can be distributed in the same man-
ner as vertical communication can be. In effect, we can use the instrument of a
complex connector disregard of any “direction” of communication. That does not
only concern resource control but also vertical service interfaces like e.g. the TCP/
UDP service interface between user and provider. In this section we will exem-
plify modeling of remote vertical communication on MGCP, which also leads to a
new interpretation of what an complex connector is good for: for modeling aspects
in a system.

We discussed the Media Gateway Control Protocol (MGCP) in chapter 3 and
presented a model in figure 3.22 on page 108. The first step is to replace the ideal

5.3 Layered Communication Networks 187

binding betweenMGC andMG by a fixed complex connector (a typed binding
in ROOM) with adequate QoS attributes, see figure 5.17. Since MGCP expects
reliable transfer of transaction messages, the complex connector should behave
almost as ideal as the ideal binding does.

MGC

MG

mgc

Context

Termination
0..∗

mg

transactionConnector

Figure 5.17: Model of a distributed resource control relation

If we want to fall back to proven technologies of mastering distant commu-
nication, one possibility is to base the refinement of the complex connector on
TCP, see annex D of [CGH+00]. This case is shown in figure 5.18. Note that the
actor classesMGCConnMgmt andMGConnMgmt are only two specializations of
a TCP user as we know it from the previous chapter, see figure 4.19 on page 151.
The connection managers host some complex functions like e.g. protocol version
negotiation and failure procedures. For the sake of a more compact drawing, we
did not cascade the address space of IP addresses and TCP ports but created a
combined address typeIPPortAddr that contains an IP address and a TCP port as
tuples.

What have we done here? First, we just inserted a complex connector between
the MGC and the MG. From a MGC and MG perspective, this insertion has no ob-
servable effect, since thetransactionConnector is supposed to be an almost ideal
connection. Then we proposed a communication refinement for the complex con-
nector. The refinement consists of two connection management functions, which
behave like two TCP users that make use of aTCPUComService and send and
receive transaction requests and replies from the MGC and the MG, respectively.
We did not resolve thetransactionConnector by a completely new communication
network, but added missing functionality in order to make use of atcpConnector.
If we interpret the refinement from a node-centric viewpoint, then the MGC node

188 Layering

Connection
MGCConnMgmt

c

d

Connection

c

d

MGConnMgmt

initiator acceptor

tcpConnector

TCPUComService

dd
n n

IPPortAddr : c{(IP1,Porta)}

IPPortAddrTop QoS

QoS

{(IP2,Portb)}

mgc mg

Figure 5.18: Refinement of complex connector between MGC and MG

and the MG node become enriched by connection management functionality. For
the MGC node, see figure 5.19.

Adding missing functionality by communication refinement is a way of adding
a concernor anaspectfrom a node-centric viewpoint. The use of complex con-
nectors goes beyond the stratification of a communication system into layers of
well-defined communication networks given by a reference model. With complex
connectors, a system can be gradually decomposed in strata of concerns, each stra-
tum adding a certain aspect to the system architecture. Complex connectors are a
very powerful tool for abstraction and separation of concern purposes. In other
fields, researchers also start to understand the usefulness of complex connectors,
see e.g. [AK03]. More information about this can be found in chapter 8.

Conclusion: Even though the complex connector was motivated as a means to
model distribution, we can generalize its purpose to model any communication
relation and use communication refinement to stratify different sorts of aspects
of that relation.

5.3 Layered Communication Networks 189

MGC

mgc

Context

Termination
0..∗

Connection
MGCConnMgmt

dmgc

MGCNode

Figure 5.19: The MGC node

190 Layering

5.4 Planes in Communication Networks

Even though telecommunication standards very often refer to OSI RM, many of
them add concepts and principles of their own; mostly, in order to structure the
problem/solution domain for increased understanding and to provide intellectual
tools for tackling the problem at hand (which is a sufficiently precise specification
of a technical system for a specific purpose). Via this process of introducing, re-
fining, and dismissing concepts in new standards, the telecommunication domain
as such constantly evolves. Unfortunately, there is neither an authoritative nor an
informal source of information that documents the current set of the most popular
concepts and principles.

One of the concepts that has survived over the years and turned out to be
extremely useful is the concept ofplanes. The concept was introduced in ISDN
(Integrated Services Digital Network) [ITU93a], taken over in GSM (Global Sys-
tem for Mobile communication) [EV98], and currently shapes the network archi-
tecture of UMTS (Universal Mobile Telecommunications System) [WAS01]. The
distinction is usually in three planes, namely thecontrol plane, theuser plane, and
themanagement plane. Figure 5.20 shows a simplified version of the GSM plane
architecture, which is almost identical to the ISDN architecture.

Figure 5.20: Informal model of the ISDN/GSM system architecture; taken from
[EV98, p.117]

5.4.1 The Plane Concept in Telecommunications

A plane encapsulates service functionality and may have internally a layered (pro-
tocol) structure. Planes are an organizational means on top of layering and com-
munication refinement. In telecommunications, theuser planeprovides for user

5.4 Planes in Communication Networks 191

information flow transfer (data PDUs), along with associated controls (e.g. flow
control, recovery from errors); thecontrol planeperforms call and connection
control functions (control PDUs), dealing with the necessary signalling to set up,
supervise, and release calls and connections; themanagement planetakes care of
(a) plane management functions related to the system as a whole including plane
coordination and (b) functions related to resources and parameters residing in the
layers of the control and/or user plane [ITU91]. Figure 5.20 displays the relation
of the planes in a three-dimensional arrangement; thephysical layeris shared by
the control and user plane for transmission purposes.

OSI RM is not prepared to handle planes (TCP/IP RM is not as well), which
is also one of its major deficiencies. The control and user plane are not separated,
the control and user information in one network layer always maps to user plane
information of the layer below. Most OSI protocols do not provide facility nego-
tiation during the active phase of a call, meaning that the system either works in
user or control mode but cannot support signalling in parallel to user data trans-
mission [ITU93a, chap.5.2].

The lack of a formal plane concept very often leads to diagrams similar to
figure 5.20. Such diagrams provide at best an informal view on the architectural
conception rather than a precise architectural model. On a case by case basis, de-
signers had and still have to invent individual solutions in order to handle planes
in their models. For example, in ISDN the engineers introduced aSynchroniza-
tion and Coordination Function(SCF) as a major component of the management
plane. The SCF is connected to the highest layer of the user plane and to the high-
est layer of the control plane via ordinary SAPs to coordinate and synchronize the
required collaboration of planes [ITU93a]. This solution does not seem to be very
ingenious; rather, it seems to be very specific and does not really address the con-
cept of planes. However, a generalization of this approach unveils its full power,
even though the designers of ISDN might not have ever thought about it.

5.4.2 Introducing Planes in ROOM

The idea is simple: If we add means to distinguish ports or SPPs/SUPs from each
other, we are also capable of distinguishing planes. A classification of ports and
SPP/SUP pairs by attributing them with a plane tag allows us to clearly iden-
tify a port, SPP or SUP as a member of a set of interfaces, which is just another
paraphrase for planes. The idea is intuitively to understand if visualized, see fig-
ure 5.21. Figure 5.21 is a solution to figure 5.12, which completely avoids using
ports to attach theCoordinator to the layer structure. Instead, we are having two
layered structures, each of them highlighting a different aspect. Planes are mean-
ingful on a “macro” as well as on a “micro” level of an architecture.

The lettersU andM stand foruser planeandmanagement plane, respectively.

192 Layering

Layer2 Co-
ordinator

Layer3

Layer1

C C

C

C

CC
M

M
M

M
M

M
Figure 5.21: Planes exemplified

The user plane is given by the actor classesLayer3, Layer2 and Layer1, with
Layer3 being a service user ofLayer2 andLayer1, and withLayer2 being a service
user ofLayer1. The management plane is given by theCoordinator and the actor
classesLayer1, Layer2 andLayer3, with theCoordinator being a service user of
each of the other three actor classes.

The plane concept applies equally well to ports. It can be e.g. used to indicate
that communication networks belong to different “spheres” of purpose. Thereby,
a control network can be distinguished from a user network and a management
network. Without a plane concept, the functional spheres would be less obvious.

In general, the plane concept lets a system architect indicate how different
functional aspects of a system architecture are spread over the system and where
they intersect. For example, in figure 5.21 the user plane and the management
plane intersect at the layer actor classes; they all have to implement user and man-
agement functionality. Only theCoordinator actor class is hosting solely manage-
ment related functions.

If we take the complex connector as a tool to stepwise break down functional
aspects (as discussed at the end of the previous section) and see this technique
in the light of a plane concept, complex connector refinement could be helpful
in keeping plane aspects as much separated and therebyorthogonalas possible.
Within the scope of this work this combined use of planes and complex connectors
has not been fully explored and is left for further research. Yet we think that planes
and complex connectors are also a very stimulating contribution to other research
areas like aspect-oriented system development, see e.g. [AK03], and Architecture
Description Languages (ADLs).

5.4 Planes in Communication Networks 193

Notation

In the example in figure 5.21, we symbolized the plane a port, SPP or SUP belongs
to by a small capital letter inside the interface symbol. This notation is based on an
initial proposal by the author [HM01] but conflicts with the possibility to depict
data interfaces by crossing the interface symbol. However, if we rethink what the
plane concept really is, we can conclude that a plane defines anamespacefor an
interface. Only interfaces of the same kind and of the same namespace referring
to the same protocol4 are allowed to be connected; the interface name is of no
relevance.

Consequently, for ports and SPPs/SUPs we extend the notation for interface
names by a preceding namespace name. Since namespaces can be organized hier-
archically, the usual “dot” notation is used. Formally, a port/SPP/SUP can be now
annotated by an address type, a namespace (hierarchy) and a name. Any of these
parts is optional:

[<addrType> :] [<nameSpace>.]*[<portName>]

An example for this is

IPAddr : ControlPlane.sender

which stands for an interface called “sender”, which is of type “IPAddr” and
belongs to the namespace “ControlPlane”. This notation shall be used if data-
oriented interfaces are used in the diagramm. Alternatively, a modeling tool may
associate a color code with a namespace and color interfaces to visually empha-
sise planes in a ROOM diagram. This makes models easier to read on e.g. a color
monitor.

5.4.3 Architecture Modeling with Planes

Taking a closer look now at figure 5.22 reveals that it is a possible but concrete
and precise architectural realization of the informal diagram in figure 5.20. We can
identify two planes, a user and a control plane, each with two independent layers.
For the sake of brevity, the access to the physical layer is not shown. The actor
class at the very top provides a management SPP to a service user, and accesses
the user and the control plane; the actor class fulfills the management function of
plane coordination like SCF does in ISDN. In addition to that, each actor class
of the user and the control plane provides a management SPP, which allows to
access plane/layer specific resource and parameters functions (the other aspect of
the management plane). With the upmost actor class as a shared layer resource
included, we can count three layers in the user plane, three layers in the control
plane, and two layers in the management plane.

4Remember that ROOM protocols depreciate to message schemata.

194 Layering

C

C

C

C

C

U

U

U

U

U

M

M M

M
M

M

M

M

M

Figure 5.22: Precise architectural model based on ISDN, fulfilling figure 5.20

Another possible architectural solution is shown in figure 5.23. Here, there is
still a coordinating actor class at the very top, but there are three interconnected
planes: Actor classes of the management plane have a peer-to-peer client/server
relationship to actor classes of the control plane, and actor classes of the control
plane have an analogous relationship to user plane actor classes. This solution
requires that all planes have the same number of layers. Given that the server actor
classes have the capability to incarnate and destroy their clients, we end up with
a highly dynamical architecture in which the management plane composes the
control plane, which in turn composes the user plane. This architecture in fact is a
lightweight realization of the Modular Communication Systems (MCS) reference
framework as described in [Boe00].

We do not want to judge the solutions presented, but rather, demonstrate that
a variety of architectural solutions can be described with the plane concept, which
all fulfill figure 5.20. The preciseness achieved is a significant improvement over
informal descriptions, and enables system architects to uniquely specify and com-
municate the functional organizational structure of planes, layers and communi-
cation networks of a communication system. The plane concept can be used to
describe the architectural design of “traditional” solutions, like ISDN, as well as
quite modern approaches such as the MCS framework. The examples also show
that we do not need to introduce any further semantical constraints on ports/SPPs/
SUPs other than discussed above. Layers of different planes might be intercon-
nected via ports, yet we promote not to connect layers of one and the same plane

5.4 Planes in Communication Networks 195

C

C

C

C

U

U

U

U

M

M

M

M

M C U

M

Figure 5.23: Precise architectural model based on the MCS framework, fulfilling
figure 5.20

via ports.
The use of an explicit notation for planes puts us into a position to define and

identify architectural patterns of the overall functional organization of a system.
This is a novel aspects for the architectural design of communication systems and
subject to further research.

196 Layering

5.5 Summary

In this chapter we discussed the notion oflayering in a communication system.
We began with a precise mathematical definition of layering. In communication
systems, layering is a form of refinement or, more precisely, it bases oncommu-
nication refinement. The communication relation between communicating parties
– abstracted by a complex connector – can be refined by another, “lower” com-
munication network (Equ. 5.5). Communication refinement retains the syntactic
interface (Equ. 5.1, 5.3 and 5.4). The fundamental constraint put on the “lower”
communication network is that its communicating parties must fulfill theindentity
relation. The identity relation demands that the communicating parties preserve
the integrity of the information flow they process (Equ. 5.6). Herewith, communi-
cation refinement lets us rationalize why communication protocols are nested and
why the refinement relation constructs an abstraction hierarchy.

We then took a closer look on the process of refining a complex connector. If
the refinement is interpreted as a replacement relationship, we end up in anode-
centric decomposition frame. If the refinement is interpreted as a nesting rela-
tionship, we end up in anetwork-centricdecomposition frame. Both approaches
adhere to the view of a communication system as an arrangement of communi-
cating parties and complex connectors. Figure 5.24 summarizes both application
cases of communication refinement.

CN-1P’N-1 P”N-1

P’N P”N

P’N,N-1 P”N,N-1

P’N-1 P”N-1CN-1P’N

CN
P”N

CN

b)

a)

Figure 5.24: Communication refinement summarized: (a) node-centric,
(b) network-centric

Next was an in-depth discussion about the “traditional” interpretation of layer-
ing and its realization in ROOM. “Traditional” layering is in total contrast to layer-

5.5 Summary 197

ing as communication refinement. Layering in the casual sense relates two entities
in aallowed-to-userelation of service, one entity acting as aservice provider, the
other as aservice user. That is all. This understanding of layering has nothing to
do with abstraction.

The realization of this form of layering in ROOM was subject to a lot of crit-
icism, mostly because of some confusing conventions in ROOM’s terminology
and notation. In a first step, we improved ROOM in that respect: we agreed to
be explicit about layering (ROOM originally hides a lot of valuable details be-
hind the construct of a layer connection), call the layer interface of the service
providerService Provisioning Point(SPP), the layer interface of the service user
Service Using Point(SUP) and annotate both in ROOM diagrams. We introduced
a symbol similar to ports. SPPs and SUPs are also connected via bindings.

These new conventions did not change the layering semantics of ROOM but
helped elaborate that there is only a small but decisive difference between SPPs/
SUPs and peer ports: SUPs are not allowed to be left unbound; an SUP cannot be
connected to the behavior component of the composing actor class but must be
exported or bound to a corresponding SPP. This simple rule ensures that service
user and service provider are always independent concerning their compositional
context and their lifetime.

This guarantee of contextual and lifetime independence is exactly what we
want to have when we refer tovertical communication. So, by definition, we use
SPPs and SUPs between communicating entities that are said to relate to each
other in a vertical communication direction. Forhorizontal communicationwe use
solely ports. This convention explains why we change ports to SPPs and SUPs if
we resolve communication refinement in a node centric manner, see figure 5.24;
the syntactic interface remains not impacted.

We then showed how communication refinement works in practice and exem-
plified it on relating the TCP user communication network and the TCP provider
communication network, and on relating the UDP user communication network
and the UDP provider communication network. When we considered distribution
for vertical communication, exemplified on MGCP, we made an interesting and
important observation: communication refinement cannot be only used to relate
“pre-designed” communication networks but also to detail a communication rela-
tion into strata of functional aspects. Communication refinement turned out to be
a much more powerful tool that for what we motivated it for.

Finally, we looked into the concept of organizing a system architecture in
planes. Planes shape the structure of almost all modern networked communication
systems; they are a means to organize a system into functional spheres. However,
planes can be useful on any architectural level. On a high level the distinction in
a user plane, control plane, andmanagement planeis common. We introduced
planes to ROOM as annamespaceattribute extension to ports, SPPs and SUPs.

198 Layering

Chapter 6

Language and Implementation

Chapter 3, 4 and 5 introduced a lot of improvements and enhancements to ROOM.
So far, the discussion of all these improvements and enhancements has been rather
informal. Now, it is time to provide a precise specification of the language changes
to ROOM. These changes led to a redesign of ROOM called ROOM++. Feature-
wise, ROOM++ contains ROOM as a subset and is specifically adapted to the
needs of modeling the system architecture of (tele)communication systems. The
implementation of ROOM++ is called PyROOM++ since Python has been used
as a programming and an action language for ROOM++.

In section 6.1 we elaborate the meta-model of the ROOM language. In sec-
tion 6.2 all improvements and enhancements to ROOM are summarized before
the meta-model of ROOM++ is explained. The meta-model is a formal descrip-
tion of all constituting language concepts of ROOM++ including their semantic
dependencies. The meta-model is the basis for the implementation, PyROOM++,
and is described in section 6.3. An additional section about an improvement to
high-level behavior specifications, see section 6.4, rounds off this chapter about
the ROOM++ language and its implementation. Section 6.5 closes with a sum-
mary.

200 Language and Implementation

6.1 The Design of the ROOM Language

For the design of our extended ROOM language, ROOM++, we have chosen to
go for a four layer meta-data architecture and use the Unified Modeling Language
(UML) as a meta-language. That is also why we present the design of the ROOM
language as a meta-model in UML. Since a future goal of this work is to strive for
integration with the forthcoming version 2.0 of the UML (possibly as a so-called
profile), it has been a reasonable choice to base the language design on the same
architectural framework and the same meta-language as the UML does. However,
other approaches are not necessarily less meaningful.

The technique to structure a language in layers of meta-data has become espe-
cially popular with the design of the UML. As a matter of fact, the UML standard
has been defined using UML itself as a meta-language. This design approach is
calledmeta-circular, see e.g. [ASS96], and is in practice “broken” by a method
calledbootstrapping. To minimize bootstrapping efforts, one usually uses only a
limited feature set of the language for the definition of its own meta-model. This
meta-circular approach has been used to some extend by the authors of the ROOM
book to explain the functioning of the ROOM Virtual Machine: The interpretation
of a ROOM model is described in ROOM.

Before we present ROOM’s meta-model, we give a brief introduction to the
four layer meta-data architecture as it is e.g. promoted by the UML standard
[OMG01] and the Meta Object Facility (MOF) 1.4 standard [OMG02]. After that
we explain, how we retrieved ROOM’s meta-model.

6.1.1 The Four Layer Meta-data Architecture

An overview of the four layer meta-data architecture is shown in figure 6.1. The
layers are numbered fromM0 up toM3 and are related in aninstanceOfrelation-
ship. Loosely speaking,M(N-1) being an instance ofM(N) means thatM(N) is a
specification ofM(N-1).

M3 M3 is the highest layer and describes a language, a so-calledmeta-language.
The meta-language specifies basic language conceptions, which are allowed
to be used on the next lower meta-layer. For example, the meta-language
may specify a class concept, the meaning of inheritance, class attributes,
methods, and an association concept in order to express anM2 specification
in terms of classical OO-concepts. Such an example of a meta-language is
MOF (Meta Object Facility), which was standardized by the OMG (Object
Management Group) in 2002 [OMG02]. Very often, the UML is taken as
a meta-language including OCL (Object Constraint Language) [OMG01,

6.1 The Design of the ROOM Language 201

Language Description =
Meta-Language

(e.g. MOF)

Language =
Meta-Model

(e.g. ROOM++)

Model =
Meta-Data

(e.g. ROOM++ Model)

Data

«instanceOf» «instanceOf» «instanceOf»

M3 M2 M1 M0

Figure 6.1: The four layer meta-data architecture

chap.6] as a means to express constraints in a model. In compiler con-
struction, the EBNF (Extended Backus Naur Form) (see e.g. [Cro82, sec.2])
could be regarded as a meta-language.

M2 On M2, the actual language is defined with the help ofM3 conceptions. On
this layer, the (modeling) language ROOM and our extended version Py-
ROOM++, respectively, are being specified. Here we find the specifications
for the ActorClass concept, thePort concept, theActorRef concept and so
on. If MOF or UML is used as a meta-language, these concepts are defined
as classes and set into relation via associations. It is also said thatM2 de-
scribes themeta-model.

M1 A concretemodelis specified on layerM1 using the conceptions defined on
M2. All the ROOM(++) models we defined throughout this work belong to
M1.

M0 At run-time, theM1 model is instantiated and exists asdata on M0. For
example, a simple model specified onM1 that consists of a single actor
class with a port of replication factor three is represented onM0 as an actor
class instance (simply called actor) and three ports.

In principle, one could have an infinite number of meta-data layers, which is
sometimes useful to have. For our purposes, the four layer meta-data architecture
is sufficient.

6.1.2 From a (Semi)Formal Specification towards a Meta-Model

There is no meta-model delivered with the ROOM book. Instead, a “formal” spec-
ification of the language is presented in anabstract syntax. Unfortunately, the ab-
stract syntax is neither formally defined nor does it capture all semantical details of

202 Language and Implementation

the ROOM language. It is not possible to understand the ROOM language solely
by reading the specification. That is why we rather prefer to classify the abstract
syntax as a semi-formal specification of the ROOM language. The good news is
that despite of its deficiency the abstract syntax for ROOM is sufficiently precise
for a human reader (along with the material of the textbook) to allow a language
designer to grasp all language conceptions and to reconstruct the meta-model of
ROOM. The process of translating the formal specification into a meta-model can
be even automated to a certain extend. Some manual intervention is needed to
clean-up the meta-model, clarify some relationships, and decide especially on the
type of the association to be used and on the multiplicity at the association ends. In
some cases the meta-model benefits from a more compact representation. The ad-
vantage of a semi-automated translation process is that the meta-model becomes
coherent with the formal language specification as presented in [SGW94] and is
less colored by an individual’s understanding and interpretation of the ROOM lan-
guage. The rules applied for the translation process are described in the following.

The Abstract Syntax

The abstract syntax defines language concepts as tuples. For example theactor-
interface concept [SGW94, p.187] is defined as a 3-tuple

actor-interface = <peer-interface, sp-interface, impl-interface>

Elements of a tuple can be further refined by another tuple, i.e. the tuple ele-
ment refers to another concept definition. Alternatively, a tuple element may stand
for a set of mouldings of a concept, which let us interpret the set as a list. Sets are
always indicated by the use of curly braces. For example, thepeer-interface is
defined by a list of port references:

peer-interface = { port-ref1, port-ref2, . . . }

The referred concept definition is also indexed to indicate that different mould-
ings are distinguished:

port-refi = <port-ref-namei, replic-factori, protocol-classi, conjug-indi>

Concepts that are not resolved further are sometimes restricted in their value,
which introduces a simple type concept. For example

conjug-indi ∈ {true, false}

This is basically the style how the whole ROOM language specification is
noted down. Some few semantic constraints are given in a functional manner;
many constraints, however, come in plain english and are spread over the ROOM
book in the respective chapters introducing and explaining the language.

6.1 The Design of the ROOM Language 203

Translation Rules

The following rules help automate the transformation of the ROOM language
specification into a meta-model. Here, UML is used as a meta-language for the
meta-model.

1. Any concept definition is translated into a class, which we also refer to as a
concept class.

2. If a tuple element of a concept definition refers to another concept defi-
nition, an association between the two concept classes is established. By
default, the association is of type “composition”: the original concept class
is composed ofthe referenced concept class.

3. If a tuple element of a concept definition refers to a list, an association be-
tween the concept class of the definition and the concept class referenced by
the list elements is established. The association end closest to the implicitly
referenced concept class is named according to the name of the tuple ele-
ment. The multiplicity is “many” or “0..* ” in UML terms.

4. If a tuple element is not resolved further, the tuple element is converted to
an attribute of the concept class. The attribute retains the name of the tuple
element. Note that this attribute in fact may be the pointer of an associa-
tion end towards another concept class. That is to keep in mind for manual
revision.

5. The following conventions for determining the type of an attribute apply:

2 If the tuple element is restricted on its value, the attribute is of type
enumeration. If the value can be of “true” and “false” only, the at-
tribute type isboolean.

2 Attribute names ending on “-name” are of typestring.

2 Attribute names ending on “-factor” are of typeinteger

The use of compositions as the default for associations is reasoned in the de-
sign approach of languages in general, no matter of if we talk about programming
or modeling languages. Formal languages typically aim to nest their structural
concepts in such a way that the inner concept is only valid in a specific context
of another concept. That is, an outer structural concept “owns” the inner struc-
tural concept. This sort of hierarchical nesting is captured best by a composition
association. Other sorts of associations are less likely to appear. The composition
association can be regarded as a first best guess.

204 Language and Implementation

As mentioned, the rules do not fully automate the translation process. While
they produce a skeleton, which includes all key concepts, the relations and seman-
tics need to be manually checked and revised.

6.1.3 ROOM Meta-Model

The outcome of the translation process is shown in figure 6.2. The figure shows the
part of the ROOM meta-model that covers high-level structure modeling includ-
ing layering; this corresponds to the material presented in chapter 6 and 7 of the
ROOM book [SGW94]. Note that we excluded the aspect of high-level behavior
modeling in our work.

The diagram does not show the constraints (so-called well formed rules),
which apply. For example, ROOM demands unique class names; one cannot de-
duce this information from the class diagram unless explicitly stated.

ROOM’s meta-model is shown here for comparison purposes with its im-
proved version ROOM++. We will not provide further commentary on ROOM’s
meta-model since we give a very detailed presentation of ROOM++ including all
well formed rules that shape the language. We would just like to draw the reader’s
attention to the following classes:ActorClass, ActorRef, PortRef andBContract
will “survive” the re-design, partly with a different name in ROOM++. The other
classes are either not needed or are replaced by more powerful concept classes.

6.1 The Design of the ROOM Language 205

A
ct

or
R

ef

+
ac

to
r_

re
f_

na
m

e
: S

tr
in

g
+

re
pl

ic
_f

ac
to

r
+

dy
n_

in
d

: C
ol

le
ct

io
n

+
su

bs
t_

in
d

: b
oo

le
an

A
ct

or
C

la
ss

+
cl

as
s_

na
m

e
: S

tr
in

g
A

ct
or

Im
pl

em
en

ta
tio

n

B
eh

av
io

r S
tr

uc
tu

re

A
ct

or
In

te
rf

ac
e

P
or

tR
ef

+
po

rt
_r

ef
_n

am
e

: S
tr

in
g

+
re

pl
ic

_f
ac

to
r

: i
nt

+
co

nj
ug

_i
nd

 :
bo

ol
ea

n

C
on

tr
ac

ts

B
C

on
tr

ac
t

+
bi

nd
in

g_
na

m
e

: S
tr

in
g

E
nd

P
oi

nt

P
ee

rI
nt

er
fa

ce
S

P
In

te
rf

ac
e

Im
pl

In
te

rf
ac

e

B
eh

av
io

rI
nt

er
fa

ce
s

E
qu

iv
al

+
eq

ui
va

l_
na

m
e

: S
tr

in
g

P
at

h

S
P

P
R

ef

+
sp

p_
re

f_
na

m
e

: S
tr

in
g

+
re

pl
ic

_f
ac

to
r

: i
nt

E
xp

C
on

tr
ac

t

+
co

nn
_n

am
e

: i
nt

C
on

nE
nd

P
oi

nt

S
A

P
R

ef

+
sa

p_
re

f_
na

m
e

: S
tr

in
g

+
re

pl
ic

_f
ac

to
r

: i
nt

C
om

po
ne

nt
S

A
P

C
on

ne
ct

io
nC

on
tr

ac
ts

C
C

on
tr

ac
t

+
co

nn
_n

am
e

: S
tr

in
g

S
rc

eE
nd

P
oi

nt

E
xp

or
te

dS
P

P
s

0.
.*

0.
.1

+
pa

re
nt

_c
la

ss

+
ac

to
r_

ty
pe

0.
.*

0.
.*

+
co

m
po

ne
nt

s

0.
.*

+
ac

to
r_

cl
as

s

0.
.*

+
bi

nd
in

g_
co

nt
ra

ct
s

2

0.
.*

+
eq

ui
va

le
nc

es

0.
.*

+
po

rt
_i

d

+
ac

to
r_

id

0.
.*

0.
.*

+
en

d_
po

rt
s

0.
.*

2.
.*

0.
.*

1.
.*

0.
.*

+
sp

ps
+

sa
ps

0.
.*

+
sp

p_
id

0.
.*

+
co

m
po

ne
nt

_s
ap

s

0.
.*

0.
.*

+
sp

ps

0.
.*

+
sa

ps
0.

.*

+
ac

to
r_

id

0.
.*

+
ac

to
r_

id

0.
.*

0.
.1

+
la

ye
r_

co
nt

ra
ct

s

1.
.*

1.
.*

0.
.1

0.
.*

0.
.*

0.
.*

+
sa

p_
id

ac
to

r_
id

0.
.*

+
ac

to
r_

ty
pe

0.
.1

+
sp

p_
id

+
sa

ps
0.

.*
0.

.*
+

sp
ps

0.
.*

+
ac

to
r_

id

0.
.*

+
co

m
po

ne
nt

_s
ap

s

0.
.* 1.

.*

+
la

ye
r_

co
nt

ra
ct

s

0.
.*

1.
.*

0.
.1

+
pa

re
nt

_c
la

ss
0.

.*

0.
.*

+
ac

to
r_

id

0.
.*

+
sa

ps

0.
.*

+
sp

ps
0.

.*

0.
.*

+
en

d_
po

rt
s

0.
.*

0.
.*

ac
to

r_
id

0.
.*

+
sa

p_
id

0.
.*

0.
.*

0.
.*

+
co

m
po

ne
nt

s

0.
.*

+
eq

ui
va

le
nc

es

+
ac

to
r_

cl
as

s

0.
.*

+
bi

nd
in

g_
co

nt
ra

ct
s

0.
.*

2

1.
.*

0.
.* F

ig
ur

e
6.

2:
M

et
a-

m
od

el
of

R
O

O
M

206 Language and Implementation

6.2 The Design of ROOM++

Before we have a look at the meta-model of ROOM++, we summarize all the
enhancements to ROOM we proposed in the previous chapters.

6.2.1 Summary of Enhancements to ROOM

Throughout the previous chapters, we extended and improved the ROOM lan-
guage step by step. The following list summarizes the extensions and improve-
ments that characterize ROOM++. The summary is not in chronological order as
they have been evolved in this work.

2 Unification of port/SPP/SUP concept

2 Control and data ports

2 Controlled Domain Models (CDM)

2 Address types, address lists and address topologies

2 Planes

2 Relaxed port semantics

2 Typed bindings

2 Classification system

Subsequently, we go through all these bullets, provide a brief explanation of
the ROOM extension/improvement, repeat the visual notation we agreed on and
supply a short note on the run-time impacts. After this, we will see, how the ex-
tensions shape the meta-model of ROOM++.

Unification of Port/SPP/SUP Concept

In chapter 5 we thoroughly investigated ROOM’s realization of layering that is
materialized by the concept of a SPP and a SUP (or SPP and SAP according to
ROOM’s original terminology). We elaborated that the port concept and the SPP/
SUP concept are so close that they can be harmonized and unified. There is only
a single rule that requires SUPs not to be left unbound.

In ROOM++ the concept unification looks like follows: ROOM++ only has a
port concept with the known attributesname, replication, andconjugation. An ad-
ditional flag namedsipKindindicates whether the port may have slightly different
binding semantics. SIP stands forService Interaction Point. If a port is of kind SIP

6.2 The Design of ROOM++ 207

and conjugation is set to false, we call the portService Provisioning Point(SPP);
if the port is of kind SIP and conjugation is set to true, we call the portService
Using Point(SUP). Semantically, only ports of the same kind can be connected
via a binding (rule 1) and a port of kind SIP and conjugation set to true (actually,
a SUP) must have an external binding (rule 2).

In our ROOM++ diagrams, we annotate ports of kind SIP by a slightly dif-
ferent symbol: the port symbol is rotated by 90 degrees. Not conjugated ports
are filled in black, conjugated ports are filled in white, see figure 6.3. Replication
greater than one is indicated by a “shadow” symbol; the exact replication factor is
not included in the graphical representation. Note also that we do not favor extra
symbols for end ports, reference ports and relay ports in our diagrams like ROOM
does. These are only naming conventions depending on where the port symbol
appears, on the border of an actor class symbol or actor reference symbol, and
whether it has an internal binding or not. While we believe the terminology to be
meaningful, we regard the introduction of extra symbols as superfluous and visual
clutter. Semantically, there is no different between ROOM and ROOM++ in this
respect.

The unification is uncomplicated and elegant since it imposes only the two
above mentioned simple rules on the modeling level but has no impacts on model
interpretation at run-time. Compare this to ROOM’s meta-model. At run-time,
messages are only sent between port instances.

Control and Data Port

In chapter 3 we introduced the option to mark a ROOM port either as acontrol
port or as adata port. We call this the actor’sstyle. Later, in chapter 5, we applied
the same semantics to SPPs and SUPs. We extended ROOM’s notation in the
following way: for control ports (which includes SPPs and SUPs) we attach a
small arrow directly to the interface but inside the actor class; for data interfaces
(again including SPPs and SUPs) we simply “cross out” the interface symbol. An
interface that is neither marked as control-oriented nor data-oriented is said to be
unspecified with regard to its style. As a matter of fact, we added a style attribute
to the concept of ports. Figure 6.3 summarizes the notation for unspecified, control
and data ports of casual or SIP kind.

Note that for model execution the distinction in control and data ports is of no
relevance.

The Controlled Domain Model

For control ports we promoted an architectural style of grey box specification, see
chapter 3. The notation we used to publish grey-box information (the Controlled

208 Language and Implementation

unspecified
port

control
port

data
port

SIP kind

replicated

conjugated

Figure 6.3: Notation for unspecified, control and data ports, SPPs, and SUPs

Domain Model, CDM) was informal and not manifested by a binding visual syn-
tax. For simple cases, when the CDM is contained in a single actor reference or
data class, we proposed to draw the respective element on the border of the actor
class symbol to highlight the grey box nature of information, see figure 6.4. Ad-
mittedly, this is not the best visual notation. On a computer aided graphical mod-
eling front-end better alternatives are thinkable. For example, if the user moves
the mouse pointer upon the control port symbol, the tool may pop up a diagram of
the CDM, which usually is a subset of the actor class’ inner structure.

CDM CDM

can be also of kind SIP,
can be replicated and conjugated

actor reference data class

Figure 6.4: Notational proposal for a simple CDM

The CDM is purely architectural information and of relevance only on the
modeling level. Model execution is not impacted by the absence of a pointer to
the CDM for a control port.

6.2 The Design of ROOM++ 209

Address Type, List and Topology

Means to enhance ROOM by the capability to model address spaces were in-
troduced in chapter 4. There, we extended the port concept by a typing concept
(an address type) and the option to specify a list of concreteaddressesthat are
assigned to instances of the port at run-time. In addition, a reference to the real-
ization of theaddress topologymay be given.

The address type is modeled by a data class that usually resides outside the
context of the actor class specification. In the notation, the address type precedes
the (optional) port name separated by a colon. The (optional) list of addresses is
enclosed in curly braces, see figure 6.5. The (optional) reference to the data class
or actor reference implementing theaddress topologyis given by a dashed line
connecting the port to the respective element.

[<addrType> :]
[<portName>] [{<addrList>}]

AddrTopology

data class
or actor reference

any kind, style,
replication or

conjugation

Figure 6.5: Notation for address spaces

Addressing has an impact on the run-time level and on the use of ports in be-
havior component specification. In ROOM, a port is incarnated as a set of port
objects at run-time, each set having as many members as specified by the replica-
tion factor, and can be addressed by an index only. For example,

port[2]

refers to the third instance (indexing starts with zero) of a port. In ROOM++ we
may associate an address type with the port, say an IP address, and write instead

port[’137.226.168.58’]

which refers to the port instance associated with the given address.

210 Language and Implementation

Planes

In chapter 5 we introduced theplaneconcept, which is a powerful tool and easy to
install in ROOM++. An additional port attribute is reserved to optionally specify a
plane. Only ports of the same plane are allowed to be connected. In the diagrams,
planes are annotated much like a namespace attribute preceding the port name,
see figure 6.6. A computerized tool may offer additional visualization effects.

[<addrType> :]
[<nameSpace>.]∗
[<portName>] [{<addrList>}]

any kind, style,
replication or

conjugation

Figure 6.6: Notation for planes

Planes do not play a role at model execution time.

Relaxed Port Semantics

In contrast to ROOM we relaxed some port semantics. Foremost, we would like
to mention the possibility to haveconjugation symmetryfor ports connected via
a binding that are not of SIP kind. There is no need to demand that one port of
a (typed) binding relationship must have conjugation set to false and the other
to true. Conjugation is only for the comfort of not specifying a protocol twice,
one version having the set of incoming and outgoing messages swapped. Still, it
remains a matter of the run-time machine to verify if a message is allowed to pass
a port according to the protocol specification or not. Conjugation symmetry is a
non-critical relaxation to ROOM. An example is shown in figure 6.7.

Figure 6.7: Conjugation symmetry in ROOM++

6.2 The Design of ROOM++ 211

Another relaxation to ROOM is that we do not haveinternal end ports(see
[SGW94, p.169]). We apply the simple rule that all external end ports of an ac-
tor class and all reference ports of its contained actor references, which are left
unbound, are implicitly connected to the actor class’ behavior component. Again,
this avoids some visual clutter in ROOM++ diagrams and slightly changes mes-
sage passing semantics in ROOM++. To emulate internal end ports, the behavior
component must explicitly ignore messages received from other “open” ports.

Typed Binding

The complex connector and its realization in form of atyped bindingwere intro-
duced in chapter 4. In ROOM++, the typed binding is modeled as a specialization
of the binding concept in order to show (a) how ROOM++ evolves out of ROOM
and (b) how typed bindings in ROOM++ make use of traditional ROOM bindings.
In ROOM++, the typed binding is much like a binding but with the possibility to
have more than two endpoints for n-ary complex connectors. The type is given by
a pointer to an actor class and a set of binary (ideal) bindings specifying, which
ports of the actor class belong to which endpoint of the typed binding.

For typed bindings the notation is shown in figure 6.8. The actor class, which
specifies the behavior and type of the typed binding is written inside the arrow-
like symbol. An optional binding name may be attached outside. The bindings
connecting the type (actor class) with the endpoints of the typed binding are not
shown in the graphical representation.

actorClassReference
a)

b)

bindingName

actorClassReference

bindingName

Figure 6.8: Notation for typed binding: (a) binary, (b) n-ary

The typed binding has run-time impacts. Instead of just establishing communi-

212 Language and Implementation

cation paths inside a ROOM run-time representation, in ROOM++ an incarnation
of the typed binding’s type is put in between incarnations of the communicating
parties.

Classification System

In chapter 4 we started to use special symbols for specific kinds of actor classes.
These symbols marked valuable architecture information and helped grasping the
functional purpose of distinct actor classes quite easily. This feature calls for
means to classify actor classes in categories if needs be. We will therefore in-
troduce a category attribute in ROOM++ for actor classes. It is up to a modeling
tool to associate a suitable visual representation to a categorized actor class and to
an actor references or a typed binding that refers to a categorized actor class.

In this work we used an actor class symbol with rounded corners in order
to indicate that this actor class may be also replaced by an n-ary typed binding
having this actor class as a type. The reason was to have a methodological clean
relation to the mathematical formalism used to reason our approach. Furthermore,
we introduced a symbol for demultiplexers, see figure 6.9.

CommunicationService

DeMux

a)

b)

Figure 6.9: Notation for a) demultiplexer and b) communication service

At run-time, the categories of actor classes have no impact on the execution
model.

6.2 The Design of ROOM++ 213

6.2.2 ROOM++ Meta-Model

The meta-model of ROOM++ is shown in figure 6.10; the well formed rules that
complement the meta-model are listed below. Note that for model explanation the
following conventions apply: All ROOM++ core concepts are modeled as classes;
their names are written with a leading capital letter, likeActorClass. Attributes as
well as associations (associations are some sort of special attributes) are written
in small letters, likename. References from one core concept class towards an-
other concept class are given by the name of the corresponding association end,
e.g.ActorClass refers to a set ofActorRefs via components; we then say that an
ActorClass has zero or morecomponents. If there is no role name provided for an
association end, we refer to it using the name of the addressed concept class but
write it with a leading small letter. For example, anActorRef has one and exactly
oneactorClass (besides having acontainer). With these rules, model navigation
should be unambiguous.

ActorClass

An ActorClass has some definedbehavior and belongs to amodel. In addition, it
may have aname and may consist of a set ofinterfaces, a set ofcomponents and
a set ofcontracts. TheActorClass can inherit these optional properties also from a
superClass. In extension to ROOM, theActorClass may be the type specifier for
a number oftypedBindings.

WELL FORMED RULE 1 (validSuperClass)
Tail and head ofsuperClass must be different.

Whenever we refer to attributes and associations ofActorClass in the follow-
ing, note that we assume that all attributes and associations of thesuperClass (and
of thesuperClass’ superClass, and so on) are implicitly addressed as well. This
assumption makes the formulation of well formed rules less complicated.

Inheritance in ROOM++ is simpler than in ROOM. In ROOM++, values as-
signed to attributes of a subclass instance overwrite values taken over from the su-
perclass instance. Association values of a subclass instance extend the association
values of the superclass instance. In ROOM it is possible to exclude association
values taken over from the superclass instance. The pros and cons of ROOM’s
inheritance mechanism are discussed in the ROOM book [SGW94, Chap.9].

Port

A Port belongs to anactorClass and optionally has aname. Thereplication factor
is by default set to one, and theconjugation flag is by default set to false. The

214 Language and Implementation

sipKind attribute determines, whether aPort instance is a casual port (the default)
or aService Interface Point(SIP). If it is a SIP and conjugation is false, we call
the portService Provisioning Point(SPP); if conjugation is true, we call the port
Service Using Point(SUP). This way, we harmonize the port and the SPP/SUP
concept. Thestyle attribute is either of value control-oriented, data-oriented, or
unspecified (default). Theplane attribute defines the namespace for the port.

EachPort must be associated with aprotocol; it may be bound tobindings and
refer to acdm (Controlled Domain Model) and anaddrTopology. To model ad-
dress spaces, thePort can be associated to anaddrType and to a list ofaddresses,
with each address in the list being of typeaddrType.

WELL FORMED RULE 2 (validBindings)
If number ofbindings is one,bindings must refer to aBinding. If number ofbind-
ings is two,bindings must refer to aBinding and aTypedBinding.

WELL FORMED RULE 3 (validKind)
If sipKind is true andconjugation true, then thePort must havebindings. This rule
ensures that SUPs are not left unbound.

WELL FORMED RULE 4 (validStyle)
If kind is “SIP” andconjugation true, thenstyle must not be of valuecontrol. This
rules complies to our convention that control can be not assigned to a SPP.

WELL FORMED RULE 5 (validCDM)
2 If style is not control-oriented, there can be nocdm.

2 Subsequently, theactorClass owning thePort is calledowner; and the other
Port listed in theendpoints of theBinding the originalPort refers to is called
other endpoint: If the actorClass of theother endpointis also referenced by
one of thecomponents of theowner, then there can be nocdm associated
to thePort. In short, this rule says that relay ports/SPPs/SUPs cannot have a
CDM.

WELL FORMED RULE 6 (validAddrTopology)
If there is noaddrType given, there can be noaddrTopology.

ProtocolClass

EachProtocolClass may have aname and a list of names forinMessages and
a list of names foroutMessages. These attributes may also be inherited from a
superClass.

WELL FORMED RULE 7 (validSuperClass)
Tail and head ofsuperClass must be different.

6.2 The Design of ROOM++ 215

ActorRef

A ActorRef has an optionalname, a defaultreplication factor of one, is ofkind
fixed(default),optionalor imported, and attributesubstitutable is set to false by
default. TheActorRef is owned by acontainer and points to anactorClass.

WELL FORMED RULE 8 (validActorClass)
The associatedactorClass must be different fromcontainer.

Binding

A Binding may have aname. It is owned either by anactorClass or by a typed-
Binding and refers to someendpoints.

WELL FORMED RULE 9 (validOwner)
A Binding must be owned by either anactorClass or a typedBinding.

WELL FORMED RULE 10 (numberOfEndpoints)
The number ofendpoints must be exactly two.

WELL FORMED RULE 11 (validKindAndNamespace)
Both endpoints must be of the samesipKind and of the sameplane.

WELL FORMED RULE 12 (validEndpoints)
2 No two endpoints are identical.

2 If owned by anactorClass (called owner subsequently), eachPort of end-
points must either be among the owner’sinterfaces or must be among the
interfaces of theactorClass of anActorRef that is among the owner’scom-
ponents.

2 If owned by atypedBinding, onePort of endpoints must be among thein-
terfaces of thetypedBinding’s type; the otherPort must be either among the
interfaces of the typedBinding’s actorClass or among theinterfaces of the
actorClass of anActorRef that is among thecomponents of the typedBind-
ing’s actorClass.

Note that we do not demand that the one of theendpoints of a Binding must
haveconjugation set to false and the other to true. Nor do we formulate any de-
mands on the consistency of protocols forendpoints. Valid messages are checked
at run-time according to the associatedprotocol of endpoints disregard of thecon-
jugationflag.

216 Language and Implementation

TypedBinding

A TypedBinding inherits all attributes and associations fromBinding. A Typed-
Binding must have atype and contains two or morebindings.

WELL FORMED RULE 13 (numberOfBindings)
The number ofbindings a TypedBinding owns must match the number ofend-
points theTypedBinding refers to.

WELL FORMED RULE 14 (validType)
TheactorClass and thetype of a TypedBinding must be different.

WELL FORMED RULE 15 (validEndpoints)
2 No two endpoints are identical.

2 TheactorClass owning theTypedBinding is called owner subsequently. The
actorClass of eachPort the endpoints of a TypedBinding refer to is iden-
tical to anactorClass of the owner’scomponents. (Note, this rule is more
verbosely described in “Remarks” on page 126, chapter 4)

GreyBoxInfo

TheGreyBoxInfo refers to a number ofcomponents anddataClasses as the con-
stituting elements of either acontrolPort or anaddressPort.

WELL FORMED RULE 16 (validComponents)
TheactorClass of a controlPort /addressPort of a GreyBoxInfo is the same as the
container of all components.

WELL FORMED RULE 17 (validDataClasses)
TheactorClass of thecontrolPort /addressPort of aGreyBoxInfo is the same as the
actorClass of the�PyClassType� that is used by�PyTypeType� of dataClasses.

�PyClassType�

Our implementation of ROOM++ is closely integrated with Python to take full
advantage of Python’s object-oriented features. At two places in the meta-model
we refer to�PyClassType�, which denotes not a Python class but a Python type
that – if instantiated – becomes a Python class. Herewith, we allow the modeler
to specify Python classes on meta-data layerM1 and refer to such a class as (a) a
addrType of Port or as (b) a behavior specification for anActorClass. In case (a),
instances of�PyClassType� make up the list ofaddresses thePort may refer to.
In case (b), it is the run-time environment, the ROOM++ VM, that instantiates
the behavior that is specified as a Python class onM1. This way, we delegate all
behavioral issues to Python and use ROOM++ as the structural framework.

6.2 The Design of ROOM++ 217

�PyTypeType�

�PyTypeType� is another element in the model to express the wiring to Python.
�PyTypeType� denotes a generic type in Python generalizing all Python types
available. This includes, for example, a class type (which we referred to as�Py-
ClassType�), a list type, a string type, an integer type, a method type and so
on and so forth. In the meta-model, we use�PyTypeType� to indicate that on
M1 layer any interna of a Python class specification (expressed by “PyClassType
usesPyTypeType”) can be subject of reference by theGreyBoxInfo instance; for
naming compatibility with ROOM, these references are calleddataClasses. The
GreyBoxInfo can expose not only structuralcomponents but also details of the
behavior Python class specification.

Practical Considerations

For convenience purposes, to ease a human modeler the specification of a ROOM++
model, thename attribute ofActorClass, Port, ActorRef, (Typed)Binding and of
ProtocolClass may be used as a unique identifier for the respective element in-
stance. As a consequence, the modeler can use names instead ofM2 instance IDs
to specify association values. However, this technique is impractical for specify-
ing the endpoints of a (typed) binding. Since ports are defined in the context of
actor classes, an endpoint may be alternatively specified by the name of either an
actor class or an actor reference and the name of a port.

218 Language and Implementation

A
ctorC

lass

+
nam

e : S
tring =

 ""

+
category : S

tring

P
ort

+
nam

e : S
tring

+
replication : int =

 1

+
conjugation : B

oolean =
 F

A
LS

E

+
sipK

ind : B
oolean =

 F
A

LS
E

+
style : P

ortS
tyle

+
plane : N

am
espace

B
inding

+
nam

e : S
tring

T
ypedB

inding

A
ctorR

ef

+
nam

e : S
tring

+
replication : int =

 1

+
kind : A

ctorR
efK

ind

+
substitutable : B

oolean

P
rotocolC

lass

+
nam

e : S
tring

+
inM

essages : M
sgN

am
eList

+
outM

essages : M
sgN

am
eList

<
<

P
yC

lassT
ype>

>

+
classN

am
e : S

tring

<
<

classN
am

e>
>

<
<

P
yC

lassT
ype>

>

+
classN

am
e : S

tring

<
<

P
yT

ypeT
ype>

>

G
reyB

oxInfo

0..*

+
interfaces

+
contracts

0..*

0..1

+
endpoints

+
bindings

2..*
0..*

2..*
+

bindings

0..1

+
typedB

indings

+
type

0..*

+
com

ponents

0..*
+

container

+
behavior

0..*

+
superC

lass
0..1

0..*

0..*+
protocol

+
superC

lass

0..1

0..*

+
addrT

ype

0..*
0..1

0..*

+
addresses

<
<

instanceO
f>

>

0..*
+

com
ponents

0..*

0..*

0..*

+
dataC

lasses

<
<

uses>
>

+
controlP

ort

+
cdm

0..1

<
<

uses>
>

+
addressP

ort

0..1

+
addrT

opology
0..*

0..*
+

com
ponents

0..*
+

dataC
lasses

0..*

0..1 +
cdm

<
<

instanceO
f>

>

0..*

+
interfaces

0..1

0..*
+

contracts

0..*

+
type

+
typedB

indings

+
container

0..*

+
com

ponents

+
behavior

0..*

+
superC

lass
0..1

0..*

+
addressP

ort
+

controlP
ort

+
addrT

opology

0..1

F
igure

6.10:M
eta-m

odelof(P
y)R

O
O

M
+

+

6.3 The Implementation: PyROOM++ 219

6.3 The Implementation: PyROOM++

In this work we focused on architecture as a matter of structure and organization
of a system and used ROOM as a base language to describe structure and organi-
zation in terms of actor classes, actor references, ports and bindings. We presumed
that behavior, which is encapsulated in behavior components and/or data classes,
is just specified somehow. We did not make any further assumptions about thehow
of behavioral specifications. We just said that state machines are one convenient
way to do so. UML’s activity diagrams might be another option, SDL’s process
diagrams a further one. Key only is, that the behavioral specification can digest
and emit messages.

For the implementation of ROOM++ we decided that an actor class’ behavior
has to be “specified” in form of a Python program; this includes also the realiza-
tion of data classes. Python is an object-oriented, interpreted, dynamically typed
programming language, which is ideal for scripting and rapid application devel-
opment and prototyping. The language is very well maintained, comes with an
extensive standard library, and has a large and growing user base. Using Python
as an embedded language for ROOM++ frees us from implementing a high-level
behavior language and provides the modeler with an easy to use, “fits your brain”
detail level action language. What makes Python especially attractive as an action
language is (a) that it is dynamically typed and (b) its interpretive nature. Dynamic
typing leads to very readable programs, which are almost on the level of pseudo
code. This comes very close to the thinking of system architects, who want to ex-
press the general functioning but do not mind all details. Program interpretation,
in addition, allows the system architect to immediately test and try out an actor
class’ behavior independent of its ROOM++ context. If wanted, one may provide
state machines or any other suitable high-level paradigm for behavior specifica-
tions as a Python library. Since Python can be easily coupled with C, C++ or Java
programs, it is also possible to use these programming languages for behavior
“specifications”.

ROOM++ itself is implemented in Python, so there is a tight integration of
ROOM++ as a framework and Python as a programming and action language.
Unfortunately, none of the existing ROOM tools was open to languages exten-
sions, nor was the source code available. What we needed for our research was
a clear, simple and extensible implementation of the ROOM language and full
control over model specification interpretation and model execution. The only so-
lution was to write an own implementation of ROOM and extend it for an uplift
to ROOM++.

For application prototyping, Python proved to be useful and efficient. The
design of PyROOM++ was first tested on a prototypical re-implementation of
ROOM’s virtual machine. This first prototype implemented almost 75 % of ROOM’s

220 Language and Implementation

language features (no layering, no inheritance) and fitted into roughly 1000 lines
of Python code. For ROOM++ the code base has grown up to 2500 lines of code,
which is still relatively compact for such a complex virtual machine. Consider
that Python programs are said to be 3–5 times shorter than the equivalent Java
program.1

6.3.1 Features and Accepted Shortcomings

Supported ROOM Features

PyROOM++ implements all features of ROOM and the above mentioned en-
hancements. To be explicit, PyROOM++ supports the following ROOM features:

2 inheritance (actor classes, protocol classes)

2 actor and port replication

2 actor decomposition

2 optionality (incarnation and destruction of an actor at run-time)

2 multiple containment (import and deport of an existing actor in another con-
text)

2 asynchronous and synchronous communication (including timeouts)

2 timers

2 message priorities

2 priority scheduler

2 observability and controllability

Accepted Shortcomings

The implementation of PyROOM++ has three shortcomings:

2 Most significantly, PyROOM++ comes without a Graphical User Interface
(GUI). The most severe consequence is that models cannot be specified in
a graphical manner on the screen. They have to be typed in as a series of
Python statements creating and linking instances of the ROOM++ language

1See e.g. http://www.python.org/doc/essays/comparisons.html (2003-03-08).

6.3 The Implementation: PyROOM++ 221

concepts. These are the statements that a GUI would perform in the back-
ground to internally set-up a model representation. In so far, PyROOM++ is
prepared to be extended by a much more comfortable user interface. Such a
minimalistic user interface is justified for a research prototype.

2 Another shortcoming we already mentioned is that behavioral specifications
do not follow a formal approach, they are rather Python programs. Even
though we present this as a shortcoming, it can also be seen as an advan-
tage: A small Python program for an actor class is often much more rapidly
written and tested than a formal specification is. Since we regard behavior of
our architecture models more as examples of use case scenarios rather than
implementation sketches, the use of Python supports our vision ofrapid
model prototypingquite well. The intent is that system architects should be
capable to experiment with alternative solutions on an architectural level,
discuss and asses them as easily and quickly as possible. For that purpose,
formal languages are more of a handicap and a restriction than a help. The
mottoarchitecture scriptingindicates a different attitude. For some strange
reason, system architecture development is often presented as a very serious
business requiring whole product cycles to evolve the system and its archi-
tecture. In our vision, system architecture modeling and development is still
a serious and very important business, but the architects are equipped with
tools to “play” with the architecture, thereby having a much shorter feed-
back cycle. As a result, the architect can much more cheaply evolve and
direct architecture development.

2 Python is not suited for real-time programming. PyROOM++ runs each ac-
tor class incarnation in its own thread of control, so execution is concur-
rent, but e.g. Python’s automated garbage collection mechanism is not pre-
dictable and may conflict with hard real-time requirements. This statement
does not mean that PyROOM++ cannot be used for modeling the architec-
ture of a real-time system (quite the opposite is true) but its capability to
correctly simulate strict real-time scenarios is limited. One improvement in
this respect would be to extend the PyROOM++ VM by an event discrete
simulator. This would make PyROOM++ useful even for performance and
load analysis.

Intentionally not Implemented

The language feature to import an already incarnated actor class somewhere else
in a ROOM model has been calledmultiple containment. A supportive concept
for multiple containment is the notion of anequivalence. An equivalence spec-
ifies (a) the location of the actor that will be imported somewhere else, and (b)

222 Language and Implementation

the locations of the actor references that import this specific actor. Locations are
described by a path downwards in the containment hierarchy of actor classes and
actor references. The equivalence is owned by the actor class with the shortest
paths to all locations.

The purpose of equivalences is questionable, because they overspecify a model.
Multiple containment works fine without equivalences. An import actor reference
unambiguously points to the actor class of which instances can be plugged in.
There is no point in specifying this information a second time with equivalences.
Consequently, we do not use equivalences and regard this language feature as an
peculiarity (if not to say an oddity) of ROOM with no further implication on the
language as such. It comes to no surprise that in later versions of the ROOM tool,
see e.g. Rational RoseRT [Rat00], there is no equivalence concept anymore.

6.3.2 Implementation of Four Layer Meta-data Architecture

An interesting question is how a four layer meta-data architecture can be im-
plemented using an “ordinary” programming language. We, for instance, imple-
mented ROOM++ in an object-oriented, dynamically typed programming lan-
guage called Python. In Python, like in many other programming languages, only
two layers are under control of the programmer. The language itself, here Python,
is given and corresponds toM2; there is not much to change.2 So, what is left is
the program level and the execution level: Python programs correspond toM1,
their run-time representation toM0. The question is: How can a four layer meta-
architecture be implemented using a programming language, which puts only two
layers, namelyM1 and M0, to the programmers disposal? One solution to this
problem is to work with shifted cascades ofM2-M0 layers, see figure 6.11.

In the upper cascade, we regard Python as the meta-language to define a meta-
model of ROOM++. That means, concepts likeActorClass, Binding etc. are spec-
ified as Python classes, and a concrete ROOM++ model is an instance thereof.
Since Python lacks some of the MOF/UML facilities like e.g. associations we may
want to use in the meta-model specification, one could (a) either extend Python
using its meta-programming facilities, or (b) provide a library with classes that
offer associations and the like as helper functions, or (c) add another shifted M2-
M0 cascade that implements e.g. MOF using Python. In practice, one may use
ingredients of all three possibilities.

In the lower cascade, Python is used to specify execution concepts of the
ROOM++ language, such as actors, ports etc. and to define theinstanceOfre-
lation of execution and ROOM++ concepts.M1 in the lower cascaderefers toM1

2In case of Python, meta-programming is supported, which enables the programmer to change
language semantics.

6.3 The Implementation: PyROOM++ 223

Python Language ROOM++ Concepts
as Classes

(e.g. ActorClass Class)

ROOM++ Model
as Objects

(e.g. ActorClass Object)

Python Language Execution Concepts
as Classes

(e.g. Actor Class)

Execution Model
as Objects

(e.g. Actor Object)

M3 M2 M1

M0
«refersTo»

M2

M2

M1 M0

M1 M0

Figure 6.11: Implementation of four layer meta-data architecture via M2-M0 cas-
cades

of the upper cascade in the sense that the lowerM1 is the interpreter of the upper
M1. Refers tois basically the definition of theinstanceOfrelation between the
upperM0 and the lowerM0 and is functionally equivalent to theFrameService of
the ROOM Virtual Machine (VM).

Altogether, the upper cascade represents layerM3, M2 andM1 of the four layer
meta-data architecture; the lower cascade contributes onlyM0. The instanceOf
relations betweenM3-M2 and betweenM2-M1 are given by the use of Python. The
instanceOfrelation betweenM1-M0 needs to be specified explicitly in the lower
cascade and is part of the ROOM(++) virtual machine. Further functionality of the
VM, like the communications service and the processing service operate onM0,
the data layer only. At run-time, the execution concepts are instantiated and relate
to objects in the ROOM Model,M0 in the upper cascade.

6.3.3 Description of Basic Functioning

An overview of the functioning of PyROOM++ is shown in figure 6.12. The spec-
ification of a ROOM++ model distinguishes aStructure part and aBehavior part,
the former referring to the later. In practice, both parts usually coexist in a single
Python file.Structure is a sequence of Python statements describing a ROOM++
model,Behavior is the complementing behavior description for the actor classes.
TheStructure is processed by an engine that implements the ROOM++ language
and verifies ifStructure is a valid model specification. An internal ROOM++

224 Language and Implementation

model representation (remember,M1 is an instance ofM2) is the outcome of the
first processing step. This internal model of the structure specification is taken by
the ROOM++ Virtual Machine, interpreted and leads to a run-time representation
of the model specification (M0). Actor classes are incarnated together with their
behavioral specifications.

Structure Behavior

Specification
Verification

& Interpretation

Model
Execution

(VM)

internal model
representation

run-time
representation

Response
Stimuli

ROOM++ language
specification

M0M1M2

Monitor &
Control

Figure 6.12: Overview of functioning of PyROOM++

The PyROOM++ VM can communicate with its environment via messages,
here calledstimuli andresponse. In addition, model execution can be monitored
and controlled. For example, the user has the option to run the VM in single mes-
sage modus, meaning that messages are processed one by one in sequence so that
the effect of messages can be observed. The VM can be halted as well. Thanks
to Python’s interpretive native, the run-time representation can be inspected at
any time. Some helper functions, for example, provide an snapshot of the current
run-time model in XML (eXtended Markup Language) [BPSMM00] format.

Figure 6.13 gives an idea how a PyROOM++ session on the console looks like.
The screenshot shows the Alternating Bit Protocol (ABP) [BSW69] in action. In
the behavior specification,print statements help see model execution in progress.

The scheduler is invoked by therun() statement. We see the sender trying
to transmit a “Hello” message with the alternating bit set to zero. However, the
channel (realized by a typed binding) drops messages with a certain probability.
The sender waits five seconds for message confirmation (the receiver sends the
received message back to the sender) and retransmits the message unless the con-
firmation is received. In the example, the sender gets its message through on the
forth attempt. The receiver’s confirmation is passed by the channel and success-
fully received by the sender.

6.3 The Implementation: PyROOM++ 225

Figure 6.13: Screenshot of a PyROOM++ session

226 Language and Implementation

6.4 Improvement to High-Level Behavior Specifica-
tion

Even though we excluded high-level behavior specifications in form of state ma-
chines as an explicit concern in PyROOM++, we worked on this area as well,
since many protocol standards are supplemented with more or less complex state
machine diagrams or state transition tables. State diagrams are a widespread tech-
nique for specifying protocols [Hol91]. For this discussion, we assume that Fi-
nite State Machines (FSM) according to the Unified Modeling Language (UML)
[OMG01] are the primary means to describe behavioral aspects.

The problem we were faced with is that the behavior of several interfaces is
interwoven in a single, compact state machine model; yet, it would be helpful to
have a better separation of behavioral concerns: which behavior could be expe-
rienced at one interface, which one at the other interface? The segmentation of
a behavioral specification according to interfaces makes (a) the behavior much
more understandable and (b) allows the architect to specify behavior of one inter-
face independently from the behavior of another interface. In return, the question
is, how to properly couple and synchronize two or more state machines.

Independent of this investigation, an Ericsson internal study on the use of mod-
eling languages for service and protocol specifications exactly points out the same
problem. It shows that the coupling problem is of theoretical as well as practical
relevance. It is also one of the reasons, why modeling languages like the UML
(Unified Modeling Language) [OMG01] have not successfully penetrated the sys-
tems engineering domain, yet. System architects of data and telecommunication
systems do not find reasonable support in today’s modeling languages for their
problem domain [Her99b].

6.4.1 Problem Description

For our discussion we will take the TCP protocol as an example. In chapter 3
we presented TCP on a rather detailed level. Figure 3.17 on page 98 showed the
Finite State Maschine (FSM) as it is defined for the TCP service provider. For
convenience purposes, the diagram is repeated here, see figure 6.14.

We already mentioned in chapter 3 that this FSM does not accurately separate
the protocol part that specifies the mutual control behavior on the horizontal inter-
face from the part that concern the vertical service interface. When we speak of
horizontal and vertical interfaces, we refer to figure 3.18 on page 100: Portt is the
horizontal interface that is associated with the Controlled Domain Model (CDM),
the protocol-oriented protocol part of TCP; portc and d constitute the vertical
interface. For the sake of simplicity, we treatc andd as a unity in the following.

6.4 Improvement to High-Level Behavior Specification 227

SYN
RCVD

CLOSED

CLOSING

LISTEN

SYN
SENT

FIN
WAIT 1

FIN
WAIT 2

TIME
WAIT

LAST
ACK

CLOSE
WAIT

CLOSED

ESTAB-
LISHED

LISTEN/- CLOSE/-
SYN/SYN+ACK

SEND/SYNRST/-

CONNECT/SYN

SYN/SYN+ACK
ACK/-

CLOSE/FIN

CLOSE
/FIN

FIN/ACK

ACK/-

FIN/ACK

ACK/-FIN+ACK
/ACK

SYN+ACK
/ACK

FIN/ACK

CLOSE
/FIN

ACK/-
Timeout/-

CLOSE/-

Figure 6.14: The TCP FSM figure is derived from [Tan96, p.532]. The heavy solid
line is the normal path for a client. The heavy dashed line is the normal path for a
server. The light lines are unusual events. User commands are given in bold font.

In order to structure TCP according to its interface functions, the FSM in fig-
ure 6.14 needs to be partitioned. The result of this step is shown in figure 6.15 in
UML notation.

Figure 6.15 a) displays the FSM, which corresponds in functionality to the
vertical interface. Instead of using the TCP service commandsLISTEN, CON-
NECT, SEND etc., the commands have been converted to OSI-like service primi-
tives solely for demonstration purposes. The new set of service primitives has no
equivalent forLISTEN anymore. On the server side, a connection request leads
to a Conn.ind (connection indication) towards the user, who can answer with a
Conn.res (connection response). Reason for this change is thatLISTEN as a block-
ing command removes some of the problems we would like to generically discuss
in the following.

Again, the client and the server side are combined in a single “vertical” FSM.
From a user’s viewpoint the communication with the client/server looks like fol-
lows: When a user requests a connection (Conn.req), the client’s FSM changes to
stateC-PENDG. The server gets notified by the connection request via a connec-
tion indication (Conn.ind) and may respond withConn.res, accepting the request.
This is confirmed to the client viaConn.con and finally, the vertical interface be-

228 Language and Implementation

SYN
SENT

CLOSED

ESTAB-
LISHED

- / tcp.out(SYN)

tcp.in [SYN,ACK] /
tcp.out(ACK)

SYN
RCVD

tcp.in [SYN] /
tcp.out(SYN,ACK)

tcp.in [ACK]

FIN
WAIT 1

CLOSE
WAIT

LAST
ACK

FIN
WAIT 2 CLOSED

tcp.in [ACK]

tcp.in [FIN] /
tcp.out(ACK)

tcp.in [FIN] /
tcp.out(ACK)

- / tcp.out(FIN)

- / tcp.out(FIN)

tcp.in [ACK]

- / tcp.out(FIN)

tcp.in - / tcp.out

NULL

C-PENDG

DATA

S-PENDG

Conn.req- / Conn.ind

- / Conn.con Conn.res

- / Data.ind Data.req

- / Disc.ind

Disc.req

Disc.req

Disc.req

Disc.req

a) b)

Figure 6.15: The FSMs of (a) the vertical and (b) the horizontal interface behavior
of the TCP layer. The shortcuts stand for connect and disconnect; the postfixes
stand for request, confirmation, indication, and response

haviors end up in stateDATA. Note that neither the user of the client interface nor
the user of the server interface see the underlying TCP protocol being used. They
only see the horizontal interface; the layer and its use of TCP is hidden.

For the protocol protocol specification of TCP, see figure 6.15 b). Since we
have not introduced any coupling yet, this FSM is strictly separated from the
“vertical” FSM. That is why there is for example no indication what might have
triggered the transition fromCLOSED to SYN SENT at the client’s side; but when
the transition is triggered, no matter how it happened, then it sends out a TCP
message with theSYN bit set. Otherwise, figure 6.15 b) is similar to figure 6.14;
just all the numerous details of the vertical interface have been stripped off. To re-
duce complexity, we slightly simplified the TCP protocol specification and added
transitions to the data transfer stateESTABLISHED.

6.4.2 The Concept of Coupled State Machines

We managed to partition TCP according to its interfaces, which already is an
achievement. All further details of TCP like flow control and buffering, congestion
control, fragmentation, error control, window flow control etc. are hidden and
subject of a refined view.

One way to couple the individual FSMs is by the usual event messaging mech-
anism provided by UML, that means by signals and/or call events. The drawback
of this approach is that one would again tightly connect the FSMs. For example,
theConn.req transition of the vertical interface (see figure 6.15 a) needs to have an

6.4 Improvement to High-Level Behavior Specification 229

activity attached that sends a signal to the horizontal interface (see figure 6.15 b).
This signal would then represent theCLOSED /SYN SENT transition that triggers
the tcp.out message. As a result, the “horizontal” FSM would more or less turn
out to be the original TCP FSM and finally look like figure 6.14. In other words,
the modeler would not be better off, and splitting of the TCP FSMs seems to be
an academic exercise only.

As another possibility, the UML offers the concept of composite states, which
can be decomposed into two or more concurrent substates, also calledregions. In
order to enable synchronization and coordination of regions, the UML introduced
synch states. However, synch states do not sufficiently support enough synchro-
nization means as the case study will show, nor do they solve the problem of
synchronizing states of distinct state machines. Obviously, another technique is
needed.

Our solution to this problem is the introduction of so-called Trigger Detec-
tion Points (TDPs) and Trigger Initiation Points (TIPs); both were motivated by
the concept of detection points in [3GT99]. A TDP can be attached at the ar-
row head of an transition in a statechart diagram; it detects whenever this specific
transition fires and broadcasts a notification message to all corresponding TIPs.
TDPs are notated by small filled boxes, see figure 6.16. A TIP can be attached
at the beginning of the transition arrow and triggers the transition to fire. Anac-
tive TIP stimulates the transition to fire on receipt of a TDP notifier independent
of the transition’s event-signature. That means, that either the event specified by
the transition’s event-signatureor the TIP can trigger the transition. Active TIPs
are visualized by small filled triangles, see figure 6.16.PassiveTIPs, on the other
hand, have a locking mechanism and can be meaningfully used with “normal”
transitions only, i.e. the transition explicitly requires an event-signature. The tran-
sition cannot fire unless the TIP’s corresponding TDP has been passedandunless
the transition’s event has been received. The order of occurrence is irrelevant, it is
just the combination of the TIP eventand the transition event, which unlock the
transition and let it fire. Passive TIPs behave like a logical “and” to synchronize
a transition, whereas active TIPs realize a logical “or”. An example of a passive
TIP can be found in figure 6.16 a); it is pictured by a small, “empty” triangle. In
general, the relation of a TIP and a TDP is given by a name consisting of a single
or more capital letters. Note that one or more TIPs may be related to a single TDP.

Now, the coupling of the vertical and the horizontal interface behavior can be
easily described, see figure 6.16 a) and 6.16 b). For example, when a client user
sends aConn.req to the vertical interface, TDPA detects the transitionNULL to
C-PENDG firing and broadcasts a notifier event to all corresponding TIPs. The no-
tifier event causes the horizontal FSM to fire theCLOSED /SYN SENT transition
and results in sending out a TCP message with theSYN bit set to one; the rest of
the scenario is straight forward. However, some explanations should help under-

230 Language and Implementation

SYN
SENT

CLOSED

ESTAB-
LISHED

- / tcp.out(SYN)

tcp.in [SYN,ACK] /
tcp.out(ACK)

SYN
RCVD

tcp.in [SYN] /
tcp.out(SYN,ACK)

tcp.in [ACK]

FIN
WAIT 1

CLOSE
WAIT

LAST
ACK

FIN
WAIT 2 CLOSED

tcp.in [ACK]

tcp.in [FIN] /
tcp.out(ACK)

tcp.in [FIN] /
tcp.out(ACK)

- / tcp.out(FIN)

- / tcp.out(FIN)

tcp.in [ACK]

- / tcp.out(FIN)

tcp.in - / tcp.out

C

B

E I

D

A

G

G, H
F

J

NULL

C-PENDG

DATA

S-PENDG

Conn.req- / Conn.ind

- / Conn.con Conn.res

- / Data.ind Data.req

- / Disc.ind

Disc.req

Disc.req

HG

A

F

B

E

D

C

I

J
Disc.req

Disc.req

a) b)

Figure 6.16: The FSMs of (a) the vertical and (b) the horizontal interface behavior
of the TCP layer coupled via TDPs and TIPs

stand the purpose of a passive TIP. Let us assume, that the protocol at the server
side has just entered stateSYN RCVD, which triggers TIPC at the server vertical
interface and results in a connection indication (Conn.ind) to the user. Now, there
are two concurrent and competing threads. The user of the server vertical interface
may either accept the connection indication and answer withConn.res or, alterna-
tively, the user may deny the request and answer with aDisc.req. Concurrently, on
the protocol thread, the server’s horizontal interface enters stateESTABLISHED
at some point in time. It is the passive TIPD that prevents the “vertical” FSM en-
teringDATA on Conn.req unless the protocol has reachedESTABLISHED. On the
other hand, if the user has decided to reject the connection indication (Conn.ind)
via Disc.req, the horizontal interface starts the disconnect procedure based on the
TDP G trigger. All this could not be done using conventional messaging without
changing the FSMs.

The advantage of using TDPs and TIPs is that the FSMs remain autonomous
but get coupled. They can notify each other about important state changes and
use it for synchronization purposes; there is no need to introduce new event mes-
sages and modify transitions. TDPs and TIPs could be interpreted as a very special
synchronization protocol, which specify FSM interaction and coordination.

6.4.3 Extending the UML

Synch states as known from the UML correspond in their behavior to what we
calledpassiveTIPs: A synch state is used in conjunction with forks and joins to
insure that one region leaves a particular state or states before another region can

6.4 Improvement to High-Level Behavior Specification 231

enter a particular state or states [OMG01]. Clearly, synch states do not support
other synchronization means between regions like TIPs do and they are not suited
for inter-FSM synchronization. Good reasons to think about integrating TIPs and
TDPs in the UML and to substitute synch states.

TDPs and TIPs can be smoothly integrated in an event driven execution model
for FSMs. The prototype we developed at Ericsson (programmed in Python [Lut96])
treats TDPs as a specialization of messages, see figure 6.17, and dispatches no-
tifier events to the event queue. The implementation of TIPs required only a few
modifications to the event processor.

If one compares the prototype design and the metamodel for state machines
(see section 2.12 of the UML [OMG01] semantics), the required extensions to
the UML can be easily identified: First, the notifier event needs to be subclassed
to the event metaclass;3 this can be achieved by using stereotypes. Then, it is to
be decided how TDPs can be attached to the transition metaclass. Since transi-
tions are restricted to have not more than one event trigger, it is not possible to
add TDPs as a second trigger. Rather, the transition metaclass can be extended
by some few properties. A TDP property is needed referring to the notifier event,
optionally added by a property holding a list of state machines the notifier event is
selectively broadcasted to. Another property are the TIP and the TIP type, which
hold the notifier reference and the valueactiveor passive, respectively. The re-
quired changes to the execution semantics of state machines are uncritical, since
the UML is relatively open to adaptations. To conclude, the extensions described
are the simplest form to introduce TDPs and TIPs to the UML using its extension
mechanisms [HvW99].

Note that TDPs and TIPs make synch states superfluous. TDPs/TIPs contain
the concept of synch states but allow much more semantic variations and exten-
sions. Synch states are an oddity in the UML with no clear conceptual roots; TDPs
and TIPs are their generalization but they are put in a meaningful semantical con-
text of transitions and events. In fact, TIPs and TDPs specify a synchronization
protocol between states machines or regions. Such a protocol does not only seem
more appropriate to capture complex interactions of synchronization but also se-
mantically cleaner. That is why we propose to remove synch states from the UML
metamodel and instead introduce the notifier event subclass, insert metaclasses for
TDPs and TIPs and associate them to the transition metaclass. This would enable
flexible semantic extensions via stereotypes to the UML user.

The prototype we developed to show the functioning of TIPs and TDPs used
the TCP example. The screenshot, see figure 6.18, shows a simple GUI that helped
monitor FSM execution in single-step modus, modify message parameters and
observe the state changes.

3Regarding events, the UML is a bit different designed than our message based prototype.

232 Language and Implementation

EventHandler

State

MsgFSM

Trans

Event

Action

Tdp

TipGuard
0..1 0..1

0..1

0..1

0..1

1
0..∗ 0..∗0..∗

0..∗

0..1 0..∗

1 source

1 target

0..∗

1 sender

1 receiver

Figure 6.17: The design of the coupled FSM prototype

6.4.4 Conclusion

Actually, the TDP/TIP concept relates very much to the observer pattern [GHJV95];
it allows the modeler to notify other FSMs about state changes. Because of the
distinction in active and passive TIPs, the concept of coupled state machines im-
plements an extended observer pattern. This lifts the observer pattern from its use
in the design domain in form of class diagrams to the modeling domain with an
explicit notation for coupling, which is a quite interesting aspect. Furthermore, it
is an interesting question, if TIPs and TDPs could be of use in sequence diagrams
or Message Sequence Charts (MSC) [ITU99c].

Since the approach presented gives means to specify and separate aspects of a
modeling entity, one could also investigate to which extend TDPs and TIPs enable
aspect-oriented modeling in extension to aspect-oriented programming [KLM+97].
It also allows the modeler to specify APIs (Application Programming Interface)
much more elegant; for instance, the TCP vertical interface could be seen as an
API to TCP. As was shown in the case study, the design of communication proto-
cols gains a lot of clarity from the separation of logical concerns. In short, it looks
like that many application areas could benefit from using coupled state machines.

Due to the specific nature of the application domain (data and telecommuni-
cations) we study, we cannot claim that we have identified all types of TDPs and
TIPs required for coupling FSMs in an efficient manner. Extensions or specializa-
tions are conceivable. However, TDPs and TIPs appear to be a powerful modeling
concept, they substitute synch states, and put a modeler in a better position espe-
cially for modeling the coordination and synchronization of concurrent systems.

6.4 Improvement to High-Level Behavior Specification 233

change State

execute a single
event only

execute as many
events as possible

insert and delete events
from event stack

Figure 6.18: Sreenshot of the coupled FSM prototype

234 Language and Implementation

6.5 Summary

The formal fixation of all the improvements and enhancements to ROOM have
been subject of this chapter and resulted in the specification of the ROOM++
language in form of a meta-model including well formed rules. ROOM++ is a
superset of ROOM with the additional features we identified as necessary but
missing in ROOM for system architecture modeling. In specific, the design of the
ROOM++ language contrasts to the design of ROOM by

2 the unification of the port/SUP/SPP concept;

2 the option to declare a port as a control or data port;

2 the possibility to explicate the Controlled Domain Model (CDM) of a con-
trol port

2 the option to specify an address type, an address list and an address topology
for a port; thereby the modeling of address spaces is supported

2 the option to relate ports to functional spheres of purpose, called planes

2 the relaxation of port semantics, so that internal end ports are not required
anymore and conjugation symmetry is permitted for the endpoints of a
(typed) binding

2 the introduction of the concept of a typed binding, which enables the mod-
eler not only to use n-ary connectors but also to assign behavior to a binding

2 the removal of the equivalence concept

2 the option to use a classification system for actor classes

Together, this set of language features gives means for very expressive archi-
tecture models. Due to a very careful language design, these features do not make
the design of ROOM++ more complicated than that of ROOM. Rather the op-
posite is the case. Because of a careful analysis of ROOM’s notion of layering,
the SPP and SUP concepts, which make up a considerable part of ROOM’s meta-
model, could be integrated in the port concept. The design of ROOM++ benefited
from these insights.

ROOM++ has been implemented in the programming language Python, that is
why the implementation is called PyROOM++. Python has been also used as the
action language to “specify” an actor’s behavior component. Thereby, we could
drop the need for a high-level behavior specification formalism, such as finite state
machines. Behavior is fully defined via Python programs.

6.5 Summary 235

Nonetheless, we studied the use of finite state machines for high-level behav-
ior specifications. The language of reference for state machines was the UML.
The problem we were faced with concerned the wish to independently specify the
functional behavior of interfaces, which requires to retroactively add the coordi-
nation and synchronization of the parts to make up a whole. For that purpose we
invented the notion of Trigger Initiation Points (TIP) and Trigger Detection Points
(TDP). TIPs and TDPs are special concepts to specify a synchronization protocol
for the coordination of related state machines. A proof of concept was realized by
an implementation of a prototype.

236 Language and Implementation

Chapter 7

Methodology

In this chapter we wrap up the systematic approach we aimed for in this work and
which has been already manifested in the previous chapters. And last but not least,
we come back to the case study we introduced at the very beginning of this work
in chapter 1. We apply our methodology and ROOM++ on the case study and hope
to persuade the reader that the result is much better than the sort of architecture
models we find in the standards.

In section 7.1 we unroll our methodology in severalmethod blocks, each
method block being a self-contained methodological unit. All units together make
up the complete methodology. Method blocksystem network architectureis the
core unit the other blocks can be plugged-in. In section 7.2, we revisit the SIG-
TRAN case study and show, how the SIGTRAN architecture looks like when we
approach the modeling process systematically and use ROOM++ as a modeling
language. Our experiences with using the methodology and ROOM++ at Ericsson
are reported in section 7.3. Section 7.4 summarizes this chapter.

238 Methodology

7.1 Systematic Approach: From Standards to Sys-
tem Architectures

When we say that we present “a systematic approach to create logical models of
network architectures” (page 5) we mean that we take a standard or an architec-
tural problem and (a) transform this problem into a specific kind of representation
and (b) do that transformation process in a certain way. The transformation pro-
cess is hardly to automate and requires a thoughtful strategy. A methodology sup-
ports the transformation process by a set of guiding questions, recommendations,
heuristics of action and solution patterns.

In our case, the new form of representation uses ROOM++ as a formal and vi-
sual language. The borderline between ROOM++ as a language and as a support-
ing part of the methodology is not precisely to draw: ROOM++ has been adapted
to the needs of our systematics. Issues that would be a methodology matter in
ROOM, are now an integral part of ROOM++. Take for example addressing. In
ROOM, modeling address spaces would require a very strict and detailed method
description of how to realize addresses inside the specification of a behavioral
component. In ROOM++, one barely needs methodic advice on how to model ad-
dress spaces, since the language supports address types, address lists and address
topologies.

A method is to some extend always a compensation of the deficiencies of a
bad or improper language. For example, the UML without a lengthy description
of how to use it for modeling a telecom system architecture is almost useless.
However, ROOM++ is well adapted to that domain, the architect will tend to use
it purposefully almost naturally and needs a much shorterhow-tomanual.

As was mentioned in chapter 2, we presume a certain view on the subject
matter of communication systems; namely, we presume a reference framework/
model that pre-structures our problem domain of standards and system architec-
tures. Otherwise we are without any orientation and without any terminology to
categorize, structure and navigate through the problem at hand. System engineer-
ing and engineering in general starts first with identifying and classifying system
elements and their structural relationships, be they static or dynamic, and then
goes on to “juggle” with these elements and relationships. The framework we
have chosen as an engineering basis is a generalization of the OSI and TCP/IP
reference model, because most standards adhere to either OSI RM or TCP/IP RM.
Often, standards explicitly mention their compliance to one of these RMs.

The new, generalized reference model for system network architectures is de-
scribed in section 7.1.1 under “Setting the Scene”. This section is at the heart of
our methodology. Refinements and details to the method core are added by sec-
tion 7.1.2, section 7.1.3 and section 7.1.4.

7.1 Systematic Approach: From Standards to System Architectures 239

Our systematics is broken up inmethod blocks. One block concerns the overall
analysis and construction of asystem network architecture, others concernproto-
col entities, resource entities, andaspect entities. A user may start with any ap-
propriate method block. In each method block, we first start “Setting the Scene”
with a rough conceptual schema of the conceptions we are dealing with. Then,
we go on and provide a list of questions and actions in the “Method Part”. The
instructions provided there should help mainly in analyzing standards. Then, in
“Using ROOM++” we show patterns of use we elaborated throughout this work
for this specific method block. Finally, in “References” we provide some hints,
where in this work we laid the foundations for this part of our methodology.

7.1.1 Method Block: System Network Architecture

Setting the Scene

The conceptual schema for the analysis of communication networks is shown in
figure 7.1. This schema applies for analyzing system and network architectures,
architecture frameworks and standards.Communication Service and Communi-
cating Entity are highlighted because of their importance in our methodology. For
the theoretical background of this approach, see chapter 4 and chapter 5.

Communication
Service

(CON/CNL)

Service
Interface

user

Control
Part

Data
Part

0..*

CON CNL

CDM

2..*

Communication
Network

Communicating
Entity

1..*

Concrete
Model

Abstract
Model

0..1

0..1

Address
Type

«refines»

Plane

2..* 1..*

0..1

0..1

0..*

0..*

1..*

peers or
controllers or

controllees

provider

top-down

bottom-up

Figure 7.1: Conceptual schema for system architecture

240 Methodology

This conceptual schema concerns the overall organization of a system archi-
tecture as a system network architecture. The key elements of a network archi-
tecture are two or morecommunicating entitiesand one or morecommunication
services. These two elements make up acommunication network. The communi-
cating entities may act in different sorts of roles: they may bepeers, controllersor
controllees. As a rule of thumb, controllers and controllees can be distinguished
by a clear control-oriented communication relationship, whereas peers cannot.
Among peers, a control-oriented communication style may be temporal but the
roles of who exerts control may change dependent of the communication context.

A communication service is the provider of aservice interface; a communi-
cating entity is the user of a service interface. The service interface can be usually
decomposed incontrol partsanddata parts. In case of aconnectionless(CNL)
communication service, the service interface consists only of a data part; for a
connection-orientedcommunication service, the service interface has in addition
a control part. For the control part, aControlled Domain Model(CDM) is associ-
ated to it. The service interface may have anaddress typeassociated to it and may
have aplaneattribute.

Key to our method is that the communication service can be modeled as a very
abstract modeland/or as a moreconrete model. One model may be substituted by
the other model. The concrete model itself represents a communication network;
herewith, our conceptual schema becomes circular. Since the circularity can be
used either fortop-downor bottom-updesign of the architecture or for a com-
bination thereof. In any case, the concrete model has to fulfill the conditions of
communication refinementwith regards to it’s “upper” communication service as
discussed in chapter 5. In practice, the circularity is not infinite; it ends at commu-
nication services, which only have an abstract model and no concrete substitution.
It is important to note that the condition of communication refinement imposes
constraints on the design of the communicating entities, which is not visible in the
conceptual schema! For more details, please refer to chapter 5.

The whole set of elements of a communication network, starting with the “top-
most” communication network, and the way of grouping these elements are re-
garded as thesystem (network) architecture.

Method Part

2 First, identify the constituting elements of a communication network: Which
are the communicating entities? What kind of communication service do
they use?

2 Which roles do the communicating entities have? Heuristic: If they belong
to the same functional sphere (plane) in the network architecture, they are

7.1 Systematic Approach: From Standards to System Architectures 241

most likely peers; if they belong to different planes, a control-oriented rela-
tionship could determine the roles.

2 Get a clear picture on the service interface and define the message schema.
What kind of message schema does the user need, what kind of message
schema does the provider offer? Hint: For a certain architectural purpose
it might be sufficient to simplify the parameters for messages, work with
symbolic values, assume some parameters as fixed etc. Architecture model-
ing is about simplification to the degree that the main behavioral features of
the architecture remain demonstrable by model execution. Distracting de-
tails should be avoided if feasible. Note: Because of the recursive nature
of the conceptual schema, the message schema of an “upper” communicat-
ing entity can be possibly derived from the schema provided by a “lower”
communicating entity and vice versa.

2 Distinguish between service messages for control and service messages for
data transfer. Split the service interface accordingly. Hint: If the service in-
terface offers a connectionless service, there are only data messages; if the
interface offers a connection-oriented service, there must be control mes-
sages.

2 If there are control messages: Define the underlying CDM.

2 If the communicating entity is a protocol entity, a resource or an aspect
entity, please refer to the corresponding method blocks. If not, the commu-
nicating entity is supposed to be anapplication; an application is not subject
to further design recommendations.

2 If the communication service represents one or more address spaces, define
suitable data classes as address types and relate these types to the corre-
sponding service interface. Make up your mind about the address topology
and design a model for it if meaningful. Hint: Sometimes there are options
to model an address type as a complex data class or as a cascade of address
spaces. Cascades of address spaces can be modeled as aspect entities, see
method blockaspect entities.

2 Addressing might require the specification of registration messages. Check,
if there is a need for registration messages and add them to the message
schema.

2 Determine the plane attribute of the service interface if of interest. Recom-
mendation: For complex architectures it might be a good idea to defer the

242 Methodology

decision to assign planes to interfaces until the architecture is reasonable
complete.

2 Define an abstract and/or a concrete (ideally executable) model for the com-
munication service. If there is no concrete model, the abstract model is a
must. There are no constraints put on the design of the abstract model, we
just recommend patterns, see below.

2 The concrete model breaks down to another communication network. Re-
peat the steps of this method part. Regarding the consequences of this break
down (called layering in telecommunications), see below.

2 Ensure that the address types modeled for the abstract model and the cas-
cade of address types of the refined model remain consistent.

2 If wanted, define also an executable model for the communicating entities.

The circularity in the concept schema puts an implicit requirement on com-
municating entities, which are part of a concretion of an “upper” communication
service. These entities have to provide the service interface in place of the re-
solved, “upper” communication service but are still users of a service interface
provided by the communication service on their communication network level. If
this may sound cryptic, remember the abstraction hierarchy in chapter 5: the com-
municating entities in the abstraction hierarchy have an “upper” and an “lower”
interface – it is exactly that, what we are after. If you look at method blockpro-
tocol entityand method blockaspect entityyou will see that both are suitable
variants of a communicating entity, providing a service interface to the “higher”
levels and a protocol and a communication interface, respectively, towards their
communication service. Resource users and resource providers are no exemption
in this respect, they are just methodically analyzed differently, see method block
resource entity.

The use and the understanding of the abstraction hierarchy is key to they way
we relate communication networks to each other. In addition, the design approach,
be it node-centric or network-centric, enforces a certain way of grouping elements
and shapes the outlook of the final architecture. The basic grouping scheme is
outlined in figure 7.2. For more details, please refer to chapter 5.

So, a final item in this method block is:

2 Decide on how to group the communicating entities and the communi-
cation service of a system architecture. Heuristic: For an implementation
viewpoint, node-centric grouping is likely to be of use; otherwise, network-
centric grouping is recommended.

7.1 Systematic Approach: From Standards to System Architectures 243

Communication Service
Communicating Entity

b)

a)

Figure 7.2: Grouping of communication entities and the communication service:
a) network-centric, b) node-centric

Using ROOM++

In ROOM++, communicating entities are modeled as casual actor classes. Com-
munication services are also modeled as actor classes but we tag the actor class
with a category value. Reason is that we allow communication services to be rep-
resented by either the actor class or a typed binding having the actor class as the
binding’s type. The latter variant is strictly in line with our algebraic reasoning
about distribution and with the introduction of a complex connector. The former
variant is a helping alternative, especially for modeling languages, which do not
support the notion of a complex connector like e.g. ROOM.

For the specification of the “ingredients” of communicating entities we do not
provide any methodological advise. It is up to the modeler to make intelligent
use of all ROOM++ language features; this requires some experience and practice
with ROOM(++).

All other issue like address types, address topology, control ports, data ports,
and the CDM are supported by ROOM++ as language features. Their use should
leave no questions. Remember that the control-port is assigned to the user of the
service interface not to the provider.

For connection-oriented and for connectionless communication services we
can offer two patterns for the abstract model, shown in figure 7.3. Slightly sim-
plified versions of these diagrams were discussed in chapter 4, see figure 4.24 on
page 156.

Note that in figure 7.3 a) the data port has been moved inside the communi-

244 Methodology

initiator acceptor

connector

CONComService

dd
n n

AddrType : Plane.c {AddrList}

AddrTopology QoS

QoS

CNLComService

AddrTopology

AddrType : Plane.d {AddrList}

QoS

a)

b)

Figure 7.3: Abstract model patterns for a (a) connection-oriented (CON), (b) con-
nectionless (CNL) communication service

cation service via the import actor reference. Communication service interfaces
must not necessarily appear on the border of a communication service.

Node- and network-centric design approaches differ in the way a container
actor class is put “around” the communicating entities and the communication
service. The patterns that apply are shown in figure 7.4. Here, the communication
service is realized by a typed binding. Note that in case of a node-centric com-
munication refinement, the vertical interfaces usually change their kind to SIP,
resulting in a SPP and a SUP instead of “casual” ports.

References

Chapter 4 is completely devoted to modeling networked communication. There,
the reader will find a very detailed introduction into this part of the methodology
including the above mentioned patterns. Also addressing is explained. Examples
refer to the design of UDP and TCP on a user and on a provider level. Alternatives
on how to model the CDM are described in chapter 3.

The abstraction hierarchy and nesting of communication network by means of
communication refinement is subject of chapter 5.

7.1 Systematic Approach: From Standards to System Architectures 245

b)

a)

Figure 7.4: Pattern for communication refinement: a) network-centric, b) node-
centric

7.1.2 Method Block: Protocol Entity

Setting the Scene

The conceptual schema for the analysis of protocol entities is shown in figure 7.5.
This schema applies for analyzing a protocol specification. Most standards in
(tele)communications concern a specific protocol and usually present the proto-
col from the viewpoint of an entity that realizes the protocol. This viewpoint is
taken here. We exclude protocols that define remote resource control, like MGCP
[CGH+00], and refer to method blockresource entity. For background and rea-
soning of this approach, please refer mainly to chapter 3.

A protocol entityconsists of aservice interfaceand aprotocol interface. The
service interface has adata partand – if offering a connection-oriented service –
also acontrol part. For the protocol interface it is characteristic that the interface
has either acontrol partor adata part. Control parts are associated with a CDM.
The service interface may have anaddress typeand aplaneattribute.

Method Part

2 Specify the message schemata for the service interface and the protocol
interface. Hints: The message schema for the protocol interface is usually
very simple; here, the aim is to make simplifying assumptions about the
message parameters, if possible. For the service interface, a specification is
usually given in the standard; the task often is to just convert the standard’s

246 Methodology

Protocol Entity
(CON/CNL)

Service
Interface

Data
Part

Control
Part

Protocol
Interface

Control
Part

Data
Part

{xor}
0..1

CONCNL

CDM

Address
Type

Plane

0..1

0..1

0..*

0..*
0..1

0..*

0..*0..1

0..10..1

Figure 7.5: Conceptual schema for protocol entity

specification to a message-based communication paradigm.

2 For the control ports, define the underlying CDM. Hint: For the protocol in-
terface the CDM basically is the state machine as defined e.g. in a standard.
However, most standards do not separate the state machine for the service
interface and the state machine for the CDM. Here, we would like to point
to the section about coupled FSMs, see section 6.4 on page 226 ff.

2 Specify an address type for the interfaces. Heuristic: Usually, in the protocol
specification, the addressing schema is explicitly given or assumed so that
an address type is easy to define for the service interface. For the protocol
interface, an address type may be not meaningful to define.

2 Determine the plane attribute of the interfaces if of interest.

2 Specify a working, executable model of the protocol entity and plug them in
the context of a communication network, see method blocksystem network
architecture. Recommendation: The level of detailed should be determined
by the demonstration purpose of the architecture model.

Using ROOM++

Protocol entities are modeled as actor classes. Again, the full set of techniques of-
fered by ROOM++ is available to the modeler for the internals of the entity; we do
not provide any methodological advise here. According to the conceptual schema,
a model of the protocol entity adheres to one of the four following patterns on a
coarse grain level, see 7.6.

7.1 Systematic Approach: From Standards to System Architectures 247

AddrType : Plane.c {AddrList}

user n d

Protocol

ProtocolEntity
AddrType : Plane.d {AddrList}

Protocol

ProtocolEntity

AddrType : Plane.c {AddrList}

user n d

ProtocolEntity
AddrType : Plane.d {AddrList}

ProtocolEntity

a)

c)

b)

d)

Figure 7.6: Patterns for a model of the protocol entity; a)-d) represent variations
of service and communication interface

Figure 7.6 a) is a typical pattern of a protocol entity offering a connection-
oriented communication service (the control port is external, the data port so to
speak “internal”) and specifying a protocol-oriented protocol on the communi-
cation interface. Many protocol specifications that provide a connection-oriented
service interface can be subsumed under this pattern. Figure 7.6 b) shows a less
common pattern: a connectionless service interface and a protocol-oriented proto-
col. Figure 7.6 c) is also quite unusual: a connection-oriented service is realized by
a data-oriented protocol. Another wide-spread pattern shows figure 7.6 d): a con-
nectionless service is realized by a data-oriented protocol. Many protocol specifi-
cations that provide a connectionless service interface can be subsumed under this
pattern.

References

The foundations for protocol-oriented protocols and data-oriented protocols were
laid in chapter 3. Examples of pattern a) and d) are the TCP and UDP provider
level as presented in chapters 4 and 5.

248 Methodology

7.1.3 Method Block: Resource Entity

Setting the Scene

The conceptual schema for the analysis of resources is shown in figure 7.7. This
schema applies e.g. for analyzing distributed resource access and resource proto-
col specifications. The schema is also valuable for non-distributed resource pro-
viders and users, but that goes beyond the scope of our methodology. For back-
ground and reasoning of this approach, please refer to chapter 3 and chapter 5.

Resource
Entity

Service
Interface

Control
Part

Data
Part

0..1

CDM

Address
Type

Plane

0..1

0..1

0..*

0..*

Figure 7.7: Conceptual schema for resource entity

A resource entitycan be accessed via aservice interfacethat must have a
control partand may have adata part. If a resource protocol is given, the protocol
is a specification of the resource’s service interface. The control part is associated
to a CDM. The service interface may be associated to anaddress typeand aplane
attribute. The party that accesses and uses the resource entity is called resource
user, the party providing the resource is called resource provider.

Method Part

2 Specify the message schema for the resource’s service interface. If a re-
source protocol specification is given, the aim is to (a) adapt the protocol
specification to a message-based communication paradigm and (b) simplify
the message parameters to the demonstration purpose of the architecture
model.

2 Specify the CDM for the control part of the message schema.

2 Make yourself clear about, who is the resource user (the controller) and
who is the resource provider (the controllee). This is important for method

7.1 Systematic Approach: From Standards to System Architectures 249

blocksystem network architecture. Heuristic: Very often, resource access is
regarded as vertical communication.

2 If meaningful, define an address type and a plane attribute for the service
interface.

2 Specify a working, executable model of the resource. Recommendation:
The level of detailed should be determined by the demonstration purpose
of the architecture model.

2 Embed the resource in the context of a resource provider. In addition, design
an executable resource user. Plug-in the resource provider and the resource
user as communicating entities in a communication network context, see
method blocksystem network architecture

Using ROOM++

A resource user has at least a control port and a CDM, whereas the resource
provider only has one or more data ports. A simple pattern is shown in figure 7.8.

Resource
User

Resource
Provider

ResourceCDM

a) b)

Figure 7.8: Simple patterns for a) resource user and b) resource provider

Note that in the context of a communication network it is assumed that re-
source user and provider are remote to each other or planned for distant commu-
nication and are therefore attached to a communication service.

References

We laid the basis for resources and resource control in chapter 3 and exemplified
it on MGCP. See also chapter 5.

250 Methodology

7.1.4 Method Block: Aspect Entity

Setting the Scene

The conceptual schema for the analysis of an aspect entity is shown in figure 7.9.
This schema is a generalization of a resource and protocol entity and applies to
all sorts of communicating entities including the application level. Aspects were
a late topic in chapter 5, see section 5.3.3 on page 186 ff. Nonetheless, they are a
very interesting addition to our methodology and broaden the applicability of our
approach considerably. We explicitly would like to stress that aspect entities are
also subject to the constraints of communication refinement.

Aspect
Entity

Service
Interface

Data
Part

Control
Part

Comm.
Interface

Control
Part

Data
Part

{or}
0..1

CDM

Address
Type

Plane

0..1

0..1

0..*

0..*
0..1

0..*

0..*0..1

0..10..1
{or}

0..1 0..10..1

Figure 7.9: Conceptual schema for an aspect

An aspect entity is a communicating entity (see method blocksystem network
architecture) that is plugged-in in a communication network context, where the
communicating entity has to fulfill an “upper”service interfaceand demands a
communication interfacetowards a communication service. An aspect entity may
have any arrangements ofcontrol partsanddata partsof its interfaces. As known
from the other method blocks, a CDM is associated to the control part, and an
address typeand aplanecan be associated to any of the interfaces.

Method Part

Since aspects are usually not standardized, nothing can be used as a given descrip-
tion of the aspect. The definition of an aspect entity is very much a matter of the
creativity and experience of a modeler.

2 Specify the message schemata for the service interface and the communica-
tion interface.

2 Define the CDMs for control ports.

7.1 Systematic Approach: From Standards to System Architectures 251

2 If meaningful, specify the address type for the interface.

2 Determine the plane attribute, if of interest.

2 Specify an executable model of the aspect entity.

2 Plug-in the aspect entity as a communicating entities in a communication
network context, see method blocksystem network architecture

Using ROOM++

An aspect entity is modeled as an actor class. In the course of this work, one
aspect we defined was thedemultiplexer– even though we did not call it an aspect
when we introduced it. When we looked closer on MGCP, we foundconnection
managementto be an aspect entity as well. Both aspect entities are repeated in
figure 7.10. We may expect to find more aspects for certain kinds of networks and
ways of stratifying a system architecture.

Connection

Connection
Management

demultiplexer

a) b)

Figure 7.10: Two aspect entity patterns: a) demultiplexer b) connection manage-
ment

Especially for aspect entities, the category attribute for actor classes may be
meaningful to classify aspects and structure them.

References

Aspects were a byproduct of our investigation on remote resource access exempli-
fied on MGCP, see chapter 5. Aspects are a welcome generalization of the notion
of a protocol entity and of a resource.

252 Methodology

7.2 The Case Study Revisited

The case study on SIGTRAN (SIGnaling TRANsport) presented in chapter 1 is of
some complexity. One has to read and understand numerous standards that con-
cern IP technology on one hand, and Signaling System No. 7 (SS7) technology on
the other hand. Table 7.1 gives an overview of the minimal set of standard doc-
uments required to understand SIGTRAN and the model we present below. We
guess that the number of pages to be read in this case is also a good guess for
the amount of information a system architect typically has to explore and under-
stand for a certain assignment. Of course, the level of experience, background and
knowledge make a substantial difference, whether about 1000 pages are regarded
as much or little.

Table 7.1: Standards covering case study

Standard Title Pages

H.248 [ITU00] Gateway Control Protocol (GCP) 115
Q.700 [ITU93b] Introduction to Signaling System No. 7 (SS7) 24
Q.701 [ITU93c] Functional description of MTP 26
Q.703 [ITU96a] Signaling link 95
Q.704 [ITU96b] Signaling network functions and messages 217
Q.705 [ITU93d] Signaling network structure 28
Q.706 [ITU93e] Signaling performance 41
RFC2719 [ORG+99] Framework Architecture: Signaling Transport 24
RFC2960 [SXM+00] Stream Control Transmission Protocol 134
RFC3332 [SMPB02] MTP3 User Adaptation Layer (M3UA) 120

824

No methodology can bear the system architect’s burden to digest all this tech-
nical information. Yet, a methodology and a supporting modeling language can
very much help dealing with this large amount of information, to structure, to
condense and abstract it. A methodology helps in processing information by trig-
gering a reflection process on what has been read and how it could be structured.

In the following, we have to omit a lot of details and make some simplifi-
cations; there is much more information in the standards than can be condensed
in half a dozen of diagrams. But that is what architecture modeling is about: we
simplify and neglect whatever can be dropped for thepurposeof the architecture
model. Here, the purpose is to give the reader a fairly well understanding of how
SIGTRAN solves the problem of conveying signalling messages over different

7.2 The Case Study Revisited 253

means of message transport. Our SIGTRAN architecture model is correct in the
sense that any implementation of SIGTRAN should fulfill the model.

Note that the case study is a real-life example. At Ericsson, we used the method
and a simplified ROOM++ notation in order to understand SIGTRAN and to pro-
pose architectural alternatives.

7.2.1 Overview

To support the reader with a navigation help through our process of step-wise
applying the methodology and breaking down the model into more and more
model artifacts, we provide an overview map in figure 7.11. Since we chose to
go top-down, the result of the first step is a model of the top level communication
network. The communication service is then made concrete by another communi-
cation network in step 2. Next, the interna of the communication service of step 2
are decomposed into three model artifacts. Step 3 and step 4 detail the respective
communication services. In step 5, the remaining artifact is refined into a commu-
nication network of its own right. Step 6 and step 7 are not visible in the figure. In
step 6, we show how a node-centric view on SIGTRAN looks like. In step 7, the
model is evolved further.

Figure 7.11: Overview of SIGTRAN modeling process

Of course, this overview is ana posteriori reflection on the steps taken and
is offered as a service to the reader. Naturally, there are alternative choices in the
process of applying our method. However, the result of the following breakdown

254 Methodology

is guided by our interpretation of the SIGTRAN standard. Other choices may lead
to a system architecture model that is not compliant to SIGTRAN.

7.2.2 Step 1: MTP3-User Communication Network

The primary goal of SIGTRAN is to make the transfer of signaling messages
independent from its means of transport. Traditionally, signaling relies on an in-
frastructure called Signaling System No. 7 (SS7). So called User Parts (UP) make
use of a Message Transfer Part (MTP) in order to convey messages. MTP is de-
composed into three layers, namely MTP1, MTP2 and MTP3, with MTP3 being
the “topmost” layer offering a connectionless communication service to the user
parts. Each MTP layer implements a protocol for communication to another, dis-
tant peer.

The aim of SIGTRAN is not to change the user parts and the interface towards
MTP3, that is too much of a valuable legacy, but to add flexibility to the transport
part. Different means of transport should be possible and peacefully coexist. Be-
sides the traditional means of transport via MTP layers, the SIGTRAN standard
proposes means to transport MTP3 protocol messages on the basis of IP technol-
ogy. Furthermore, SIGTRAN is very much concerned about smooth interaction
between different transport technology domains. Messages should easily pass the
border from one transport domain to another domain and vice versa. The user
parts should notice no difference whether they communicate to another user part
based on the same or another transport technology. In fact, the message transfer
part should be completely transparent to the users.

This architectural vision of SIGTRAN can be easily modeled top-down if we
start on the level of user parts and ask – according to our methodology – the
questions: “Which are the communicating entities?” and “How does the commu-
nication service look like?” The resulting communication network is shown in
figure 7.12. The user parts are calledMTP3Users here.

To make the architectural vision of SIGTRAN clear, we distinguish two groups
of users. On the left hand side we group the user parts, which are based on SS7
technology; on the right hand side we group the user parts, which are supposed to
be based on IP technology. That little difference is indicated in the bottom by the
remarks “SS7 domain” and “IP domain” in italics. Besides, there is no qualifying
difference between the user parts, meaning that all user parts make use of the
MTP3 service protocol and adhere to the same address type.

Despite all the complexities of SS7, the interface provided to its users it quite
primitive. In our model it is theMTP3UComService that provides the communi-
cation service to its users. The service provides connectionless communication:
messages can be sent viaMTP-Transfer.Req and received byMTP-Transfer.Ind.
“Req” stands for “request” and “Ind” for “indication”. For details on the message

7.2 The Case Study Revisited 255

MTP3
User

MTP3
User

MTP3UComService

(SPC,SI) : s
{(PC1,ISDN),
(PC2,ISDN)} (SPC,SI) : i

{(PC3,ISDN),
(PC4,ISDN)}

QoS
(Q.706)

MTP3UserTop

MTP-Transfer.Req
MTP-Transfer.Ind
MTP-Resume.Ind

MTP-Pause.Ind
MTP-Status.Ind

SS7 domain IP domain

Figure 7.12: Model of the MTP3 user communication network

parameters, see [ITU96b]. Furthermore, three types of notifications can be de-
livered to the user:MTP-Pause.Ind, MTP-Resume.Ind, andMTP-Status. For the
sake of clarity, the protocol messages have been annotated in figure 7.12; this is
no standard ROOM(++) notation.

Users ofMTP3UComService are addressed via a Signaling Point Code (SPC)
and a Service Indicator (SI). The SPC identifies the user’s location, the SI the
specific user part. In our model, we assume the user part to be ISUP (ISDN User
Part) in correspondence to figure 1.3 b) (page 15) and figure 1.4 (page 16) in
chapter 1. We assume the Point Codes (PC)PC1 andPC2 for users in the SS7
domain, see ports, andPC3 andPC4 for users in the IP domain, see porti. The
destination of a message is called Destination Point Code (DPC); its origin is
called Originating Point Code (OPC).

The model forMTP3UComService is an abstract one. The topology of “who
can send messages to whom” is given byMTP3UserTop. The high quality de-
mands of SS7 apply and are captured by theQoS note, which refers to [ITU93e].
SS7 services are extremely reliable and resistant against many sources of failure.

A complete specification ofMTP3UComService in PyROOM++ is easy to
realize. The simplicity and expressiveness of figure 7.12 contrasts to the figures
of the SIGTRAN standard as shown in chapter 1. As a means to communicate the
architecture vision of SIGTRAN, figure 7.12 already suffices.

Note that we neglected registration messages and configuration management
services for the sake of simplicity.

256 Methodology

7.2.3 Step 2: MTP3/M3UA Communication Network

Next, we substitute the abstract model of step 1 by a refined, more concrete model,
which is – according to the recursive approach of our methodology – itself a com-
munication network. Since the communicating entities on this level are protocol
entities, namely MTP3 and M3UA, the corresponding method block applies.

If we ask ourselves “Which are the communicating entities withinMTP3U-
ComService (step 1)?”, SIGTRAN gives us a clear answer on it. Within the SS7
domain,MTP3 is the standard protocol entity to be taken [ITU96b]; within the
IP domain,M3UA (MTP3 User Adaptation) is the recommended protocol entity
[SMPB02], see figure 7.13.

M3PComService

MTP3 M3UA
SI : s (SPC,SI) : i

ConnectionLink

SPC : s (IP,Port) : i

SS7 domain IP domain

{PC1,PC2,PC5}

{ISDN}

{(IP1,PortX),
(IP2,PortX)}

{(PC3,ISDN),
(PC4,ISDN)}

m3d m3d

Figure 7.13: Model of the MTP3 provider communication network

MTP3 uses the notion of aLink for connection-oriented communication with
its peers. It is pattern b) in figure 7.6 that comes into action: a connectionless com-
munication service is realized via a protocol-oriented protocol. The address type
on ports consists only of the SI, since the address type of the portMTP3 is at-
tached to is of typeSPC. Remember, that address relaying (see chapter 5) ensures
that this addressing scheme is consistent with the address scheme provided by the
abstract model in step 1. With the support of our methodology, all this information
can be retrieved from an detailed analysis of the MTP3 protocol as described in
the standard, see [ITU96b]. The standard is also the resource to consult if one is
interested in a refined model ofMTP3. Briefly said, MTP3 can be decomposed
in a Signalling Message Handling (SMH) part and a Signaling Network Manage-

7.2 The Case Study Revisited 257

ment (SNM) part; each part is further decomposed into three functional block, see
figure 1 of [ITU96b].

Within the IP domain, SIGTRAN has specified the MTP3 User Adaptation
layer (M3UA).M3UA provides a perfect MTP3-like interface and addressing scheme
on porti. Internally,M3UA maintains the notion of aconnection. Similar to links
used by MTP3, M3UA uses connections to convey MTP3 user messages. In that
sense, MTP3 and M3UA look very much alike. Both protocols use a sort of routing
function to distribute messages on links and connections, respectively. The rout-
ing function is primarily based on the DPC and the OPC of an MTP3 user mes-
sage. However, a closer look unveils fundamental technical differences: (a)M3UA
connected toM3PComService changes the address space. Therefore,M3UA must
have an address converter function that needs to be configured. Connections are
addressed on their control port via an IP address and an IP port number, and these
addresses must be somehow matched against SPC/SI pairs; (b) the IP/Port topol-
ogy on the IP domain side is very different from the SPC topology on the SS7
side. More on the topology in step 3 and 4.

The abstract model of the communication serviceM3PComService is not
complete. The dashed lines indicate that we decomposeM3PComService into
three entities: two communication services and one actor reference. The two com-
munication services model the communication means within each domain, they
are described in step 3 and 4; the actor reference models the glue between both
communication technology domains, see step 5.

There is one important detail, one should not oversee. The address list attached
to port s of M3PComService has an additional point code,PC5, which did not
show up in figure 7.12. We listedPC5 as an example of an MTP3 entity, which
has no user part attached to it. Consequently, we could not seePC5 in figure 7.12.

7.2.4 Step 3: MTP3 Communication Service

Figure 7.14 shows an abstract model of the communication service offered to
MTP3 entities via ports. The model is derived from the connection-oriented com-
munication pattern, see figure 7.3 a), and should be understandable without further
comments. The actor referencespartyA andpartyB can importMTP3 entities for
raw message transfer viam3d. In SS7, links are usually pre-configured paths of
communication, which are set-up prior to any message traffic.

Just for the sake of greater clarity, we split ports into two address “segments”.
PC1, PC2 andPC5 represent point codes which are located in the SS7 domain,
whereasPC6 belongs to the “grey zone” integrating the SS7 and IP technology
domain.

An example link topology is given in the note box attached toLinkTopology.
SincePC5 has no user part in our models,PC5 functions as a Signaling Transfer

258 Methodology

partyA partyB

link

MTP3ComService

m3dm3d
n n

SPC : s{PC1,PC2,PC5}

LinkTopology QoS

QoS

{PC6}

SS7 domain

PC1

PC2

PC6

PC5

Figure 7.14: Model of the MTP3 communication service

Point (STP) only. If the routing functions of MTP3 are properly set up, the topol-
ogy is resistant against failure of one link in the triangle spanned byPC1, PC5
andPC6.

Key to the understanding of SIGTRAN is that all messages targeted toPC3
andPC4 are routed toPC6. Also, all signaling messages originating fromPC3
andPC4 will pop up atPC6 and take their route (a chain of links) to their destina-
tion, eitherPC1 or PC2. Point codePC6 is the point of interaction with the other
technology domain.

7.2.5 Step 4: M3UA Communication Service

Figure 7.15 shows an abstract model of the communication service offered to
M3UA entities via porti. Structurally, this model and the previous model (fig-
ure 7.14) are very similar and base on the same communication pattern. The actor
referencesinitiator andacceptor can importM3UA entities for the transfer of sig-
naling messages viam3d. Also inM3UAComService, thesctpConnectors are usu-
ally pre-configured paths of communication. The prefix “sctp” stands for “Stream
Control Transmission Protocol” (SCTP) [SXM+00], which is the protocol SIG-
TRAN recommends for the concretion of thesctpConnector.

As we did for theMTP3ComService model, we split porti into two address
segments. Here,(IP3,PortX) belongs to the “grey zone” integrating the SS7 and IP
technology domain.

7.2 The Case Study Revisited 259

initiator acceptor

sctpConnector

M3UAComService

n n

(IP,Port) : i{(IP3,PortX)}

IPPortTopology QoS

QoS

{(IP1,PortX),(IP2,PortX)}

IP domain

m3dm3d

(IP3,PortX)
(IP1,PortX)

(IP2,PortX)

Figure 7.15: Model of the M3UA communication service

The address topology forM3UAComService looks different. In principle, there
is no equivalent to STPs, all “endpoints” are directly connected to the interface
point (IP3,PortX). Here, we drop the issue of how e.g.(IP1,PortX) and(IP2,PortX)
can communicate to each other, since this is a delicate and not fully clarified matter
in the M3UA standard. In general, theIPPortTopology is a star topology, whereas
theLinkTopology (figure 7.14) can be – at least theroretically – complete but is ir-
regular in practice. The reason for this categorical difference in the topology is that
failures on the link level have to be compensated by alternative routes. However,
in the IP domain, ansctpConnector is not assumed to be subject of failure, i.e. it is
assumed to be very unlikely that asctpConnector can break. Failures and appro-
priate measures to compensate them are delegated to lower protocols levels in the
IP domain. If we would further decompose theM3UAComService we could more
precisely point out, what is meant by that. Nonetheless, it is a controversy among
experts in the field, whether these assumptions are appropriate and whether ansct-
pConnector requires a redundant connector in parallel or not. These few remarks
may show thatlinks andsctpConnectors are not that much comparable as it might
seem at first sight. The philosophy and consequences regarding QoS (Quality of
Service) are fundamentally different in SS7 networks and IP-based networks.

260 Methodology

7.2.6 Step 5: Mediator

The actor class mediating between theMTP3ComService and theM3UACom-
Service is calledMediator and shown in figure 7.16. TheMediator itself is mod-
eled as a communication network withMTP* andM3UA* as the communicating
entities and anInterworkingFunction as the communication service.

Mediator

M3UA*

Connectionm3d

MTP3*

Link m3d

(IP,Port) : i {(IP3,PortX)}SPC : s {PC6}

Interworking
Function

SPC : y
{PC3,PC4}

SPC : x
{PC1,PC2}

M3UAComServiceMTP3ComService

Figure 7.16: Model of the mediator

The star symbol attached to the actor class namesMTP3* andM3UA* indicates
that both actor classes are almost identical in functionality toMTP3 andM3UA,
see figure 7.13. The subtle but important difference is explained for MTP. When a
signaling message arrives at anMTP3 entity, the standard behavior is as follows:
the message is either distributed to the user part or routed to anotherMTP3 entity.
The criteria is whether the DPC of the signaling message matches the SPC address
of theMTP3 entity or not. AnMTP3* behaves exactly the same, but in addition,
messages with certain SPCs can be handed over to theInterworkingFunction in-
stead. In our case, messages that end up atPC6, which havePC3 or PC4 given
as their DPC, are neither distributed nor routed but forwarded to theInterworking-
Function. A similar functional enhancement extendsM3UA*.

The function of theInterworkingFunction is relatively trivial: it just delivers
messages to the right port. A signaling message handed over byMTP3* is pushed
to M3UA*, analyzed byM3UA* and finally delivered to its destination in the IP
domain. If we would have taken network management functionality into account

7.2 The Case Study Revisited 261

as well, theInterworkingFunction would be far from trivial.

7.2.7 Step 6: Design View

We do not further refine our model on SIGTRAN, because the model developed
so far contains everything SIGTRAN is basically all about. We could go on and
further resolve the communication servicesMTP3ComService and M3UACom-
Service; but we would not gain any insights that are specific to SIGTRAN.

The final question in our methodology is, which viewpoint we would like to
take on the model we designed. Should it remain network-centric or should it be
node-centric? Figure 7.17 shows both views in a single diagram. The diagram is
not compliant to ROOM++ but rather a schematic sketch of the ROOM++ entities
and their relations. This simplification should help not getting lost in too many
details.

SGSEP STP MGC

MTP3 MTP3*

MTP3
User

M3UAM3UA*

Mediator

MTP3
User

MTP3

M3UAComServiceMTP3ComService

Figure 7.17: Views on the SIGTRAN model

The dashed line marks the borders of theMTP3UComService, the dotted line
the borders of theM3PComService; these lines show nesting levels of the network-
centric viewpoint, which is also dominant in our methodology. The grey shaded
areas mark a node-centric viewpoint on SIGTRAN. MTP3 users and MTP3 are
hosted by nodes calledSignaling EndPoints(SEPs), MTP3 entities without a user
part are hosted bySignaling Transfer Points(STPs). On the right hand side, MTP3

262 Methodology

users stacked upon M3UA reside in a node calledMedia Gateway Controller.
The mediator including adapted versions of MTP3 and M3UA make up theSig-
naling Gateway(SG) node. From a node-centric viewpoint and on this level of
abstraction, SEP, STP and SG communicate to each other via an MTP3 commu-
nication service; SG and MGC, on the other hand, communicate to each other via
an M3UA communication service.

7.2.8 Step 7: Media Gateway

There is only one open item left: Where has theMedia Gateway(MG) been? In
figure 1.2 on page 13, the MGC is connected to the SGand the MG. Obviously,
we have “forgotten” to model the MG. Figure 7.18 adds the missing piece to our
model.

MG

MGC

MTP3User (ISUP)

mgc

mg

Context

Termination
0..∗

transactionConnector

control
plane

user
plane

Figure 7.18: Modeling the MGC/MG relation

As a matter of fact, ISUP as our user part of choice does have an additional
port mgc that lets ISUP control a resource, hosted by the MG node. Thetransac-
tionConnector models the binding between ISUP and the controlled resource; we
already discussed this kind of connector in chapter 5 and showed there also how
the connector can be refined by an aspect entity.

It is vital to understand that the MGC and all the other nodes like the SG, the
STP, and the SEP belong to a functional sphere calledcontrol plane. The control

7.2 The Case Study Revisited 263

plane is the signaling system. The MG, however, is part of another functional
sphere, theuser plane. Both planes interact only via dedicated interfaces. These
interfaces can be distributed as shown in our example and are typically control-
oriented. If we want, we can annotate the different planes by attaching a plane
attribute to all ports of the control plane, and another plane attribute to all ports of
the user plane.

7.2.9 Evaluation

In chapter 1 we criticized the standards and their kinds of architectural models.
Let us briefly recap, in which way we improved in comparison to the standards.

2 The “model diagrams” presented in the standards are rarely consistent, fol-
low no clear conventions, and their interpretation is often vague and intu-
itive. The use of ROOM++ as a modeling language removes many of these
deficiencies.

2 In contrast to ROOM and many other modeling languages, ROOM++ has
been extended to enable modeling of address spaces, planes, complex con-
nectors, control models, and QoS. Addressing, for example, is a very im-
portant issue in communication architectures, which is usually dropped in
architecture diagrams due to non-existing capabilities to express address
types and address lists.

2 The overall purpose of SIGTRAN is much more clearer than it has been
before.

2 In chapter 1 we complained about the insufficient expressiveness of protocol
architectures. Our architecture model, on the opposite, is much more clearer
about the protocol entities and their relations. We, for example, showed that
M3UA and MTP3 are not that similar like conventional protocol architec-
ture diagrams might suggest. We could also clarify the meaning and the
functioning of the Nodal Interworking Function (NIF), see figure 1.4 on
page 16.

2 The notion of complex connectors (often declared as communication ser-
vices in our diagrams) provided us with a very powerful abstraction tech-
nique. As our case study demonstrates, complex connectors enable the mod-
eler to decompose a system in manageable model artifacts. We could also
see that we can cut-off the refinement process at any suitable level.

The reader may go through the list of questions we raised in chapter 1 regard-
ing SIGTRAN and judge him/herself how much we improved. We think that we

264 Methodology

could considerably remove a lot of unclarities and substantially improve the qual-
ity and the expressiveness of architecture models for telecommunication systems.

7.3 Experiences 265

7.3 Experiences

The methodology, the language ROOM++ and an early version of PyROOM++
have been developed during the authors employment at Ericsson and were tested
under real conditions. With this background we can report some experiences we
made with the practical use of our work.

Language

First was the development of ROOM++. The language extensions became rela-
tively stable around mid of 2002, at least on a visual level, after a period of active
development of over two years. The precise formalization of ROOM++ required
another half a year.

ROOM++ turned out to be very helpful for developing an understanding of an
architectural problem. The language proved its use for clarifying and communi-
cating architectural designs. Several times, we experienced that the clarity gained
by the use of ROOM++ released creativity and led to new solutions. In the case of
SIGTRAN, two patents on SIGTRAN were the outcome.

We also learned that ROOM++ models, if explained once, got easily adopted
by other system designers. However, understanding ROOM++ models and cre-
ating ROOM++ models is not the same. Without extensive training, there is not
much of a chance that system designers use ROOM++ as a tool on their own
initiative to express their architectural conceptions.

Interesting was also that engineers soon got bored by drawing the ROOM(++)
port symbols over and over again on the white board. Message schemata and port
conjugation were rarely a matter of debate, so the graphical formalism was soon
simplified.

Methodology

With the introduction of the complex connector concept to ROOM++, the lan-
guage started to almost drive the methodology by itself. We continuously asked
ourselves the questions what can be abstracted by a complex connector and what
are the communicating entities. After some time, it was just a small step to work
out the guidelines, heuristics and patterns we used over and over again. How-
ever, during the trial period at Ericsson, the difference between ROOM++ and the
methodology was not that clear as it is now.

Tool

Except for small demonstration cases, PyROOM++ and its predecessor PyROOM
were not used in the SIGTRAN case study. Even though PyROOM++ is simple to
use for anybody familiar with the Python programming language, we experienced
that many system designers do not necessarily need executable models. Often
they have a quite well understanding of the general functioning of, say, a protocol

266 Methodology

entity, so they just “emulate” a ROOM++ model in their minds. What seems to
be much more important for system architects is to get a clear picture on the
interwork of building components, how they relate to each other, how their address
spaces are related, where and how Controlled Domain Models (CDM) play a role
etc. In that respect, ROOM++ helps a lot since it provides many missing concepts
required for such a structuring.

7.4 Summary 267

7.4 Summary

The methodology we presented in this chapter has a very generic approach: a
communication networkconsists ofcommunicating entitiesand acommunication
service, see figure 7.1. The communication service can be considered as a com-
plex connector, which we introduced as a key modeling element to reason about
(a)distributionin chapter 4 and (b) aboutlayeringin chapter 5. Consequently, we
have two alternatives to express the communication service either by anabstract
modelor by aconcrete model. If modeled abstractly, the communication network
describes a distribution model. If modeled concretely, the communication network
breaks down into another communication network – we called this form of layer-
ing more preciselycommunication refinement. Both models are interchangeable,
since the service interfaces of the communication service remain not impacted by
this approach.

The communicating entities can be peers, controllers or controllees. Depend-
ing on the type, we provided different kinds of method blocks that help analyze
the situation. Very typical in communication system areprotocol entitiesandre-
sources entities. A generalization thereof is theaspect entity, which can be used to
model anything else, applications or refinement aspects, as long as the constraints
imposed by communication refinement are fulfilled.

The service interface provided by the communication service and used by
communicating entities can be decomposed in “atomic” parts that separate control
from data. According to the categorization in chapter 3, we can then distinguish
betweencontrol-oriented, protocol-orientedanddata-orientedtypes of commu-
nication. If control-oriented, the Controlled Domain Model (CDM) has to be de-
fined. In addition, our method covers modeling address spaces and planes.

As a final example, we applied our methodology and ROOM++ on the SIG-
TRAN case study we introduced in the introduction of this work, see chapter 1.
In comparison to the architecture diagrams presented by the SIGTRAN standard,
we could drastically improve consistency and expressiveness of the architecture
models.

To conclude, a methodology and a language adapted to the domain of telecom-
munication systems can team up to a strong and powerful engineering tool. The
art is to find the right balance: a not too specialized language and a not too detailed
methodology. We believe, we have found a good solution.

268 Methodology

Chapter 8

Related Work

In this chapter we relate our approach to other published work. Problematic is that
our investigation touches many fields of computer science. That is why we put our
approach in a historical context and related it from there on to other work.

Section 8.1 provides the historical “environment” this work is an ancient of.
Subsequent sections position ROOM to other languages (section 8.2), discuss re-
cent approaches about modeling telecommunication systems (section 8.3), men-
tion other frameworks (section 8.4), and reflect todays state-of-the-art in architec-
ture modeling (section 8.5).

270 Related Work

8.1 Historical Context

Modern telephony switching systems came to birth in the early 1960s. The new
technology of computer control, called Stored Program Control (SPC), started to
substitute electro-mechanical systems [MJ85]. One of the main advantages intro-
ducing SPC was flexible systems, where additions and changes could be intro-
duced primarily through program modifications rather than through changes in
the hardware [Vig64]. However, by the late ’60s, it was time for a review. At Er-
icsson, one had learned that the current generation of SPC, as it existed in the
late 1960’s, was expensive and way too complex, with hindsight, for widespread
use, except, to some extent, in the American Bell companies. The disadvantages
were above all in the high costs of handling – design, testing, modification, fault-
correction, production, installation, and operation and maintenance [MJ00]. What
was needed was a new approach to structure and organize these complex sys-
tems. With the engineering techniques available at that time – “Structured Pro-
gramming” is in the air [DDH72] –, the principle of functional modularity was
a promising approach. Within Ericsson, it was IVAR JACOBSON, who made the
important contribution of the “block concept” in 1967 [JCJÖ92], the structuring
of the system into self-contained functional modules (blocks), with all interwork-
ing between blocks performed by software signals [Her99b]. The development of
Ericsson’s AXE switching system was based on these principles; it went into trial
service late in 1976 and became and still is one of the most successful switching
systems worldwide [MJ00].

Hand in hand with this development, the study of new languages was initiated.
The industry was in need of languages highly adapted to the demands of program-
ming and designing telecommunication systems. The outcome of these efforts
were SDL (Specification and Description Language) [ITU99a], MSC (Message
Sequence Chart) [ITU99c], CHILL (CCITT High Level Language) [ITU96c],
and MML (Man-Machine Language) [ITU88]. All three languages have been
standardized by CCITT (Commité Consultatif International de Télégraphique et
Téléphonique) and are still in use today. In the early 1980’s, SDL and MSCs
were intended for system specification and design, CHILL for detailed design,
coding and testing, MML primarily for operation and maintenance. Especially
for coding, many companies developed their own variant of a programming lan-
guage. For example, Ericsson developed PLEX (Programming Language for EX-
changes) [Her99b], Northern Telecom PROTEL (PRocedure Oriented Type En-
forcing Language) [PW82]; both languages are block structured.

The new complexity of switching systems by sheer size of code is impres-
sive. Around 1980, several hundred programmers had produced over one million
lines of code over a five years period for the DMS-100 switching system fam-
ily of Nothern Telecom. This represents over 15 000 procedures in 1500 mod-

8.1 Historical Context 271

ules [PW82].
From this viewpoint, it may come to no surprise thatarchitectureis and always

has been an important issue in telecommunication systems design. Architecture is
and was a means to deal with complexity. Of course, the term “architecture” was
not clearly defined, but absolutely in line with the design paradigm of that time:
the modularization of a system is regarded as its architecture. Architectures were
not modeled, as we tend to say today, but rather described either informally, usu-
ally in some sort of box-line diagrams, or formally with SDL. It is interesting
to read, which design conceptions were identified for new software architectures
in the 1980’s: independent subsystems for call control (features), signaling, and
hardware control; data abstractions partitioned for each subsystem; formal com-
munication protocols; concurrent and asynchronous operation of each subsystem;
terminal-oriented control; layered virtual machines; FSM Specifications; applica-
tion programs; systems programs [Law82] – the topicality of the list is astonish-
ing.

Meanwhile, object-orientation conquered the world and became the domi-
nating design and programming paradigm. Between 1989 and 1994, the number
of object-oriented modeling languages and methods increased from less than 10
to more than 50 [Alh98]. New iterations of these first-generation methods and
languages began to appear during the mid-1990s that incorporated each other’s
techniques. Basically three popular approaches aimed for unification and stan-
dardization [Her99a], namely RUMBAUGH ’ S Object Modeling Technique (OMT)
[RBL+91, Rum96], BOOCH’ S Object-Oriented Design (OOD) method [Boo91,
Boo94] and JACOBSON’ S Object-Oriented Software Engineering (OOSE) method
[JCJÖ92]. The outcome was the Unified Modeling Language (UML), which was
adopted by the Object Management Group (OMG) for standardization in Novem-
ber 1997. Today, the UML is the de facto language for modeling and designing
object-oriented systems. It is almost a knock-out criterion for a CASE (Computer
Aided Software Engineering) tool vendor not to be UML compliant. Besides early
and justified criticism from academia on the design and preciseness of the UML
(see e.g. [SK98]), the UML has been a marketing success. The forthcoming ver-
sion 2.0 of the UML will mark a new milestone in the evolution of the UML.

In parallel to the advances in object-oriented modeling, so-called Architec-
ture Description Languages (ADLs) came onto the scene. Developers started to
be dissatisfied with the practice of architectural design, which has been largely ad
hoc, informal and idiosyncratic: architectural designs are often poorly understood,
architectural choices are based more on default than solid engineering principles
and architectural designs cannot be analyzed for consistency and completeness
[GMW97]. In response, researchers in industry and academia developed a num-
ber of ADLs. Examples of ADLs include – among others – ACME [GMW97],
Darwin [MDEK95], Rapide [LKA+95], Unicon [SDK+95] and Wright [All97].

272 Related Work

Although all of these languages are concerned with architectural design, each fa-
vors a certain paradigm or application field. ACME and its XML-pedant ADML
[ADM00] are an exception: they understand themselves as an interchange lan-
guage for software architecture. Despite such efforts, there is no unification of
ADLs in sight. Rather, UML 2.0 strives to evolve as an ADL in conjunction to be-
ing an OO modeling language. Since the OMG decided in 2001 to go for “Model
Driven Architecture” (MDA) as their strategic direction [MM01], it is not unlikely
that the UML will win the race as an ADL as well.

8.2 Position of ROOM to Related Languages 273

8.2 Position of ROOM to Related Languages

As was mentioned, the choice for ROOM was ana priori decision, i.e. ROOM was
selected among other candidates as the preferred modeling languagebeforewe
started our investigation on key design principles of telecommunication systems.
We wanted to have a language at hand that (a) enables us to express architectural
patterns and models of design and that (b) is close to the design culture to be found
in the telecommunication domain.

ROOM claims to be suitable for the design of complex (real-time) systems.
But how about so-called Architecture Description Languages (ADLs), which claim
the very same (but usually leave out the attribute “real-time”)? What about SDL,
another famous language used in telecommunications? And why not UML? In
this subsection, we position ROOM as our preferred language of choice.

ROOM and Real-Time

Languages that target the description of real-time systems easily end up with con-
cepts similar to ROOM. The encapsulation of independent threads of control and
the need to synchronize the access to data often leads to the concept of acompo-
nent(or actor, in ROOM) as an independent active object, a sort of port concept
as a defined interface and a concept of pre-defined paths for communication. A
very illuminating example is the book of MAGEE and KRAMER [MK99]. The
authors explain important concepts and techniques in concurrent programming,
abstractly in models and concretely in Java. The abstract modeling approach is
based on an algebraic notation, a process calculus called Finite State Processes
(FSP). The FSP belongs to the family of notations pioneered by MILNER [Mil89]
and HOARE [Hoa85]. In the book, MAGEE and KRAMER soon start to visualize
the models in a graphical language that reminds very much of ROOM.

ROOM as an ADL

On the other hand, modeling languages that target the high-level structure of
the overall application rather than the implementation details must be capable to
modelcomponents, connectorsand theirconfigurations; in addition,tool support
for architecture development and evolution is a must. At least, this are the qualify-
ing attributes of so-called Architecture Description Languages (ADLs) according
to [MT00]. ROOM does fulfill the mentioned requirements and is also often cate-
gorized as an ADL if it combines its forces with the UML [RSRS99, GKMP+00].

274 Related Work

ROOM vs. SDL

ROOM and SDL are two competing languages in the telecommunication area.
Both languages are very close in spirit to design principles found for telecommu-
nication systems, see [Her99b, EHS97]. And both languages are similar in design:
they are component-based, support compositions of components, exchange mes-
sages and signals, respectively, for communication and have a virtual machine
specifying the execution semantics. But which one to choose? We gave ROOM
precedence over SDL because:

2 SDL is not open to extensions. It has been a standardized language for
decades. The language kernel is stable and will not undergo dramatic changes
anymore. There is no extension mechanism built into the language.

2 ROOM is not standardized, but ROOM’s high-level features (actors, ports
and bindings) are expected to be included in the forthcoming version 2.0
of the UML.1 Taking UML’s extension mechanisms into account [HvW99],
the UMLified version of ROOM will be open to extensions and gain a lot
of flexibility. This means that this work remains actual and on the spot
since it can be uplifted to the most popular modeling language around.
The choice for ROOM is – in that sense – an implicit choice for UML.
However, a concrete study on that is left for further research. Problematic
with UML 2.0 will be that it (most likely) will not have precise execution
semantics. For a discussion of recent trends in UML standardization con-
sult [SRK02, Dud02, Mel02, FT02, Dor02].

2 Even if we forget about UML kind of extension mechanisms, the language
design of ROOM as such is much more open to language changes and adap-
tations than SDL is. For example, ROOM’s interface concept is slightly
more advanced than the interface concept in SDL is, since ROOM defines
a dedicated interface entity (port, SAP, SPP). If we think of extensions like
adding behavior to ports, it is easy to do so in ROOM but a major effort in
SDL; it is even against SDL’s language design philosophy. Same is true for
extensions to the binding concept. Since our need of language extensions
was foreseeable, ROOM was clearly the preferred choice.

2 Object-orientation (OO), the dominating modeling paradigm today, is an
integral part of ROOM. ROOM fits much better to an OO paradigm than
SDL does. For SDL, OO is a relatively recent addition to the language,
see [ITU99a].

1Status of information is April 2003. The UML 2.0 will just use another terminology.

8.2 Position of ROOM to Related Languages 275

2 Behavior can be specified via state machine diagrams in ROOM. State ma-
chines have become one of the most common means to specify behavior.
SDL’s process diagrams are less favorite. However, we have to admit that
behavior modeling is not our main concern. We could have taken a neutral
position on that.

2 SDL is a specialized niche language and will most likely always be a niche
language despite efforts to ease the translation of SDL specifications to
UML [ITU99b]. To this day, ROOM has been a niche language as well
but with a promising future: most probably, ROOM will be integrated in the
UML (see also remarks below).

2 SDL is typically not regarded as an ADL. It is nobodies first choice for
architecture modeling. This is maybe not an academic argument but impor-
tant in the perception of people: ROOM keeps up with the state-of-art in
architecture modeling.

ROOM and UML

We spoke about the future of ROOM and that ROOM most likely becomes a
part of the UML. This development might give the impression that ROOM is
inferior to UML. Despite its few basic language conceptions, ROOM is much
more expressive than one might anticipate and in many aspects comparable to
UML features: ROOM does know class diagrams for actors, protocols, and data
objects. All associations between actor classes are resolved in form of contracts.
UML’s interface concept is close to the port concept (ports go beyond UML’s
interfaces). Aggregation and composition are both part of ROOM. Collaboration
diagrams are supported by ROOM, state diagrams as well. Sequence diagrams are
an option to ROOM.

In some sense, ROOM could be interpreted as a set of strict rules of how to use
UML, or – to speak modern terminology – ROOM could be interpreted as an UML
framework or profile. There is a white paper from SELIC and RUMBAUGH exactly
trying to describe such a ROOM profile; this profile is usually referred to as UML-
RT [SR98b, SR98a]. Note that UML-RT is not formally specified; it rather stands
for the idea to adopt ROOM by UML. A different approach but with the same
goal of integrating ROOM in UML is sketched e.g. in [RSRS99]; there, ROOM
helps the UML to add features of an ADL. Shortly speaking, ROOM is not much
less powerful in its expressiveness than UML is; it is just designed for a specific
purpose with a specific domain in mind, for which the UML is not sufficiently
staffed. The combination of ROOM and UML seems to be a beneficial next step
for the evolution of both and is on its way with the forthcoming UML 2.0

276 Related Work

Summary

To conclude, ROOM ranks among those modeling languages, which are regarded
as appropriate for modeling software and/or system architectures. Insofar, ROOM
is a solid ADL choice. In addition to that, ROOM has been designed for the
domain of real-time systems: it supports an message-oriented communication
paradigm (which is ideal for asynchronous, synchronous communication and re-
mote communication), and decouples concurrent threads of execution. Finally,
ROOM is very close in spirit to the design principles applied for telecommu-
nication systems. All in all, ROOM is a good choice for our purpose. Though
we would like to emphasis that ROOM is not the only possible choice. We took
ROOM because of its elegance in design and ease of extensibility.

8.3 Modeling Telecommunication Systems 277

8.3 Modeling Telecommunication Systems

Latest since the UML has been standardized by the Object Management Group
(OMG) and published in a series of book,modelingis on everybody’s lips. Also
the importance of the architecture level in software systems is more and more re-
spected, see for example OMG’s initiative on Model Driven Architecture (MDA)
[MM01]. However, model-basedsystemsengineering is not as developed and ma-
ture as model-based software engineering is [Fis98]. We already speculated that
system engineers do not have much use of modeling languages as long as there
is no guidance given ofhow to apply such languages in technical domains. Evi-
dently, there has been published only little about that subject. When it comes to
model telecommunication systems the fundus of literature is even smaller.

There are some few books, in which the object-oriented paradigm has been
used to model communication systems. One example is “Object-Oriented Net-
works: Models for Architecture, Operations, and Management” [Bap94] from
BAPAT. The book uses not only conventional object-oriented modeling concepts
but also advanced concepts from specialization theory. The syntax used to cap-
ture the semantics of models is the Abstract Syntax Notation One (ASN.1) (see
e.g. [Lar99]). BAPAT develops a classification scheme adapted to the needs of
communication networks that enables a designer to develop understandable and
meaningful object and class diagrams. The approach is descriptive and the tech-
niques presented seem to be suited for modeling product architectures. The risk
is that given “facts” are just schematically modeled (it is relatively easy to note
down an object diagram for almost anything) without any reflection about the ac-
tual functioning and the actual meaning for the architecture. The actual value for
architecture modeling and model simulation is highly questionable.

Another example is “Object-Oriented Network Protocols” from BOECKING

[Boe00]. The book’s intention is to provide a foundation for the object-oriented
design and implementation of network communication protocols. While model-
ing of communication systems is not the topic of the book it is worth to have
a look at the Modular Communication System (MCS) Framework developed by
BOECKING. It gives an insight how protocols could be modeled and that object-
orientation is a practical approach in protocol design.

A completely different approach is taken by “Modeling Telecom Networks
and Systems Architecture: Conceptual Tools and Formal Methods”, written by
MUTH [Mut01]. This book condenses more of 20 years of experiences gained
on the subject within Ericsson. It presents a method and a language for model-
ing telecommunication system and is based on the processing system paradigm
[MHL01]. The whole field of communication systems is covered and a stringent
methodology and classification scheme is discussed; nevertheless it remains un-
clear how all the pieces precisely fit together. Main criticism on the book is that the

278 Related Work

language used is proprietary and not formally specified, so it is hard to verify if the
approach is really consistent and works. Unfortunately, the author lacks a proof
thereof. Nonetheless, MUTH’s way of a viewing telecom systems was influential
for this work.

8.4 Frameworks 279

8.4 Frameworks

Our work bases on the two most wide-spread frameworks in use for telecom-
munication and data communication systems, namely OSI RM and TCP/IP RM.
Besides, there are some other frameworks around which address the topic of dis-
tributed communication system and propose a terminology, a set of conceptions,
and a system architecture organization. The most important frameworks to men-
tion are the Reference Model for Open Distributed Processing (RM-ODP) [Put01,
ITU97], the Telecommunications Information Networking Architecture (TINA)
[CM95], and the Object Management Architecture (OMA) [SS95a, SS95b], which
is the basis for the Common Object Request Broker Architecture (CORBA) [MR97,
COR02]. Basically, all three frameworks try to specify an environment that makes
it as easy as possible to develop, install, and maintain distributed applications.
In that sense, these frameworks go far beyond the scope of our work. However,
we are not interested in a specific framework for a processing infrastructure but a
method that enables us to design virtually any communication environment from
the ground up, be it an RM-ODP, a TINA, a CORBA platform, or any other com-
munication system. What we are after are, so to speak, “atomic” modeling con-
cepts and a stringent methodology that helps us build any communication system
or reference framework. It is left for further research to investigate the utilization
of our approach for e.g. TINA or RM-ODP.

280 Related Work

8.5 Architecture

We already mentioned thatarchitecturewas quite early an explicit issue in the
design of telecommunication systems, see the remarks under “historical context”.
Today, architecture is still regarded as a key instrument in managing the com-
plexity of those systems, see e.g. [PKB+02]. Yet, it comes to some surprise that
the termarchitecturehas multiple definitions – no universal definition has been
established. So far, the Software Engineering Institute (SEI) has collected more
than 90 definitions from literature and practitioners.2 Nonetheless, there is a trend
to observe that

2 architecture is largely regarded from a structural perspective; in addition,
framework models, dynamic models and process models seem to be main
perspectives [CBB+03, p.4]

2 one can have differentviewson an architecture; a view emphasizes a certain
aspect of an architecture. An influential paper on views is KRUCHTEN’ S

“4+1” approach to architecture [Kru95]

2 a module-oriented viewtype and a component-and-connector (C&C) ori-
ented viewtype are re-occurring themes, sometimes under different names,
in literature; see, for example, [SG96, HNS00, Szy02]. A module tends to
refer to a design-time entity, whereas a component tends to refer to a run-
time entity [CBB+03, p.22]

2 recurring forms within a viewtype have been widely observed; these forms
are usually called architecturalstyles; a style is a specialization of element
and relation types [CBB+03]

2 design patterns [GHJV95] could be regarded as the finer-grained analog
of architectural styles [CBB+03, p.33]. However, the borderline is not that
clear to draw. More research is required on the relation of pattern-oriented
software architecture (see e.g. [SSRB00]) and architecture modeling.

The viewtype we take with ROOM++ is clearly C&C: in ROOM++ we decom-
pose any system into components (actors) and connectors (bindings). The C&C
viewtype has a long-lasting tradition in the telecommunication domain (see SDL)
and has been subject of research in the field of architecture modeling for years.
While structural decomposition was mainly understood as component decomposi-
tion, the role of the connector has been neglected for quite some time. Meanwhile,

2See http://www.sei.cmu.edu/ata (2003-04-07)

8.5 Architecture 281

the situation has changed: the connector has been discovered as a first-class mod-
eling element, which requires as careful specification as a component does, see
e.g. [SG96]. Connectors represent, for example, pipes or filters. Independent from
our work, CLEMENTS et al. have also introduced the termcomplex connectorwith
a similar meaning to our use of the term [CBB+03, p.113]. However, we found no
evidence that anybody else has been developed such a stringent and methodologi-
cal use of complex connectors as we do, including our sound algebraic reasoning.
It just looks like that others start to discover the power of complex connectors in
various domains such as in the area of aspect-oriented development, see [AK03].
What our work does not touch upon is how the C&C style of ROOM++ is re-
lated to other viewtypes like a module viewtype and an allocation viewtype. For
UML-RT, there is a proposal in [Sel99].

Of course, there is a lot literature to find on the subject of (architecture) model-
ing of distributed systems in general, see e.g. [Rad01, Kle00], but these works are
typically concerned with the application level of communication systems, which
is just oneaspect of a (tele)communication system. But telecommunication sys-
tems design is very much about a whole communication infrastructure, which is –
spoken in modern terms – a highly specialized middleware. Drastically speaking,
telecommunication design would be an easy field, if it were all about the applica-
tion level.

282 Related Work

Chapter 9

Summary and Outlook

This work closes with a short summary (section 9.1) and an outlook (section 9.2)
on further research.

284 Summary and Outlook

9.1 Summary

The aim of this work was to contribute to the goal to uplift architecture mod-
eling of telecommunication systems to a mature discipline. We argued that an
established, mature modeling discipline is characterized by the use of a suitable
modeling language, the use of amodeling tool, and a systematic approach to trans-
form problems (we focussed on system standards) to models, amethodology. We
claimed to present a systematic approach to create logical models of network ar-
chitectures of virtually any telecommunication system. The thesis statement was
that such an approach can be based upon as few as three basic cornerstones: the
types of communicationand the design principles ofdistributionandlayeringin a
network system.

9.1.1 Cornerstones

A very brief summary on the three cornerstones is given in the following:

Types of Communication

The question of control and the notion of a Controlled Domain Model (CDM) laid
the reasoning for grey-box specifications and the basis for the distinction of three
basic types of communication:data-oriented communication(zero-sided control),
control-oriented communication(one-sided control), andprotocol-oriented com-
munication(two-sided control). The latter, protocol-oriented communication, pro-
ved to be a specialty of telecommunication systems. Architectural grey-box speci-
fications reasoned on the aspect of control are an unique contribution of this work.

Distribution

To model distribution, the conception of acomplex connectorwas identified as
key. Components (actor classes in ROOM) and complex connectors are first class
elements of our modeling approach and are sufficient to model any distributed
communication system. Novel is the consequent and methodic use of the complex
connector, see also the next item.

Layering

The “in-between” of components, namely the complex connector, also laid the ba-
sis for an improved understanding of layering in communication systems:commu-
nication refinementrefines the complex connector into another distributed com-
munication network. We could also generalize the notion of layering by the con-
cept of stratifying network aspects.

9.1 Summary 285

9.1.2 Results

The outcome of our investigation is manifested by a modeling language, a tool
implementing the language, and a method. The case study and industrial experi-
ence give good indications that the results achieved are of practical relevance and
use.

Language

We took the Real-Time Object-Oriented Modeling (ROOM) language as a basis
and extended and improved it step by step according to the insights gained ontypes
of communication, distribution and layering. The following list summarizes the
extensions and improvements that characterize ROOM++, the extended ROOM
language:

2 Unification of port/SPP/SUP concept

2 Control and data ports

2 Controlled Domain Models (CDM)

2 Address types, address lists and address topologies

2 Planes

2 Relaxed port semantics

2 Typed bindings

2 Classification system

Tool

ROOM++ has been implemented in Python; that is why we called the tool Py-
ROOM++. PyROOM++ is a full re-implementation of ROOM (with some minor
deviations) plus all the above mentioned extensions. The meta-model of ROOM++
was streamlined in comparison to ROOM. Basic shortcommings of PyROOM++
are

2 No GUI, i.e. there is no graphical modeling frontend available

2 No formal behavior specifications as finite state machines; all behavior has
to be specified via Python code

286 Summary and Outlook

2 Due to the use of Python, which is an interpreted language, PyROOM++ is
not suited for real-time applications

These shortcomings characterize PyROOM++ as a research prototype, serving
as a proof-of-concept implementation, and not as a tool for an industrial environ-
ment. Nonetheless, the use of Python promotes the idea ofrapid model prototyp-
ing.

Method

We presented a systematic approach that guides a system architect in the process
of transforming a standard to an architecture model. The method is divided in four
method blocks:

2 Method Block: System Network Architecture

2 Method Block: Protocol Entity

2 Method Block: Resource Entity

2 Method Block: Aspect Entity

9.2 Outlook 287

9.2 Outlook

Due to our experience with the ROOM++ notation in practice, we belief ROOM++
to be a serious proposal as an architecture modeling language. To be a competitive
candidate, some deficiencies of ROOM++ need to be solved first: (a) There is no
mapping given from logical models to physical entities (assignment viewtype).
A good starting point in that direction is [Sel99], in which a mapping proposal is
made for UML-RT (a variant of ROOM). (b) So far, ROOM++ follows a message-
based communication paradigm. Letting components (actor classes) communicate
by means of method calls, the option is given for a object-oriented communication
paradigm on a component level. We also have to adapt the concept of a complex
connector in that respect.

Another issue to investigate is how ROOM++ can be smoothly integrated with
the forthcoming version of the UML, UML 2.0. The next UML release knows
about components, ports, and connectors. However, a thorough analysis is re-
quired whether the UML 2.0 can be used much alike ROOM++ or if a specific
UML 2.0 profile (a sort of language extension package) is required. The migra-
tion from ROOM++ to UML is an important strategic step to achieve acceptance
in an industrial environment.

Further research is required on the idea to use communication refinement for
the stepwise introduction of aspects in system models. Here, we see a huge po-
tential for ROOM++ and for our methodology to contribute to recent advances in
aspect-orientations, see e.g. [AK03].

288 Summary and Outlook

Bibliography

[3GT99] Customised Applications for Mobile network Enhanced Logic
(CAMEL) Phase 3 – Stage 2. Technical Specification 3G TS
23.078 version 3.1.0, 3rd Generation Partnership Project, Valbonne,
France, August 1999.

[ADM00] The Open Group, 1010 El Camino Real, Suite 380, Menlo Park,
CA 94025-4345, USA.Architecture Description Markup Language
(ADML), Version 1 (Document Number: I901), April 2000.

[AGH00] Ken Arnold, James Gosling, and David Holmes.The Java Program-
ming Language. Addison-Wesley, 3rd edition, 2000.

[AK03] Colin Atkinson and Thomas K̈uhne. Aspect-Oriented Develop-
ment with Stratified Frameworks.IEEE Software, 20(1):81–89, Jan-
uary/February 2003.

[Alh98] Sinan Si Alhir.UML in a Nutshell. O’Reilly, 1998.

[All97] Robert J. Allen.A Formal Approach to Software Architecture. Tech-
nical report number: Cmu-cs-97-144, Carnegie Mellon University,
May 1997.

[AP98] V. S. Alagar and K. Periyasamy.Specification of Software Systems.
Springer, 1998.

[ASS96] Harold Abelson, Gerald Jay Sussman, and Julie Sussman.Structure
and Interpretation of Computer Programs. MIT Press, 2nd edition,
1996.

[Bal96] Helmut Balzert.Lehrbuch der Software-Technik: Software Entwick-
lung. Spektrum Akademischer Verlag, 1996.

[Bap94] Subodh Bapat.Object-Oriented Networks – Models for Architec-
ture, Operations, and Management. Prentice Hall, 1994.

290 BIBLIOGRAPHY

[BCK98] Len Bass, Paul Clements, and Rick Kazman.Software Architecture
in Practice. Addison-Wesley, 1998.

[BDH+98] Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies, Fran-
tisek Plasil, Gustav Pomberger, Wolfgang Pree, Michael Stal, and
Clemens Szyperski. What characterizes a (software) component?
Software – Concepts & Tools, 19(1):49–56, 1998.

[Ber99] Alfs Berztiss. Contexts, Domains, and Software. In P. Bouquet,
L. Serafini, P. Bréezillon, M. Beuerecetti, and F. Castellani, editors,
Modeling and Using Context; Second International and Interdisci-
plinary Conference, CONTEXT’99, Trento, Italy, September, 1999,
number 1688 in Lecture Notes in Artificial Intelligence, pages 443–
446. Springer, 1999.

[Boe00] Stefan Boecking.Object-Oriented Network Protocols. Addison-
Wesley, 2000.

[Boo91] Grady Booch. Object-Oriented Design with Applications. Ben-
jamin/Cummings, 1991.

[Boo94] Grady Booch.Object-Oriented Analysis and Design with Applica-
tions. Addison-Wesley, 2nd edition, 1994.

[BPSMM00] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler.
Extensible Markup Language (XML) 1.0 (Second Edition). W3C
Recommendation, W3C, October 2000.

[Bra89] Robert Braden. Requirements for Internet Hosts – Communication
Layers. Standard RFC 1122, Internet Engineering Task Force, Oc-
tober 1989.

[Bra96] John W. Brackett. Graduate Education in Software Engineering
and Product-line Engineering. InProceedings of the International
Workshop on Development and Evolution of Software Architectures
for Product Families, Las Navas del Marqués,Ávila, Spain; Novem-
ber 18–19, 1996, November 1996.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

[Bro93] Manfred Broy. (Inter-)Action Refinement: The Easy Way.Pro-
gram Design Calculi, Series F: Computer and System Sciences,
118, 1993.

BIBLIOGRAPHY 291

[Bro96] Manfred Broy. Towards a Mathematical Concept of a Component
and Its Use. InComponentware Users Conference 1996, Munich,
Proceedings. SIGS Publications, 1996.

[Bro98a] Manfred Broy. Compositional Refinement of Interactive Systems
Modelled by Relations. In Willem-Paul de Roever, Hans Lang-
maack, and Amir Pnueli, editors,Compositionality: The Significant
Difference, LNCS 1536, pages 130–149. Springer, 1998.

[Bro98b] Manfred Broy. A uniform mathematical concept of a component:
Appendix to [BDH+98]. Software – Concepts & Tools, 19(1):57–
59, 1998.

[BS01] Manfred Broy and Ketil Stølen.Specification and Development
of Interactive Systems:FOCUS on Streams, Interfaces, and Refine-
ment. Springer, 2001.

[BSW69] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A Note on
Reliable Full-Duplex Transmission over Half-Duplex Links.Com-
munications of the ACM, 12(5):260–261, May 1969. This paper is
the basic reference to the so-called Alternating Bit Protocol, even
though this name has not been used in the paper itself.

[CBB+03] Paul Clements, Felix Bachmann, Lenn Bass, David Garlan, James
Ivers, Reed Little, Robert Nord, and Judith Stafford.Documenting
Software Architecture: Views and Beyond. Addison-Wesley, 2003.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg.Distributed
Systems: Concepts and Design. Addison-Wesley, 3rd edition, 2001.

[CGH+00] Fernando Cuervo, Nancy Greene, Christian Huitema, Abdallah
Rayhan, Brian Rosen, and John Segers. Megaco Protocol Version
1.0. Standard RFC 3015, Internet Engineering Task Force, Novem-
ber 2000.

[Cha94] Alan F. Chalmers.Wege der Wissenschaft: Einführung in die Wis-
senschaftstheorie. Springer, 3rd edition, 1994.

[CM95] Martin Chapman and Stefano Montesi. Overall Concepts and Prin-
ciples of TINA – Version 1.0. Tina baseline, TINA-C, February
1995.

[COR02] Common Object Request Broker Architecture: Core Specification –
Version 3.0. Specification formal/2002-11-03, Object Management
Group (OMG), November 2002.

292 BIBLIOGRAPHY

[Cro82] David H. Crocker. Standard for the Format of ARPA Internet Text
Messages. Standard RFC 822, Internet Engineering Task Force,
August 1982.

[DDH72] Ole-Johan Dahl, Edsger W. Dijkstra, and Charles A. R. Hoare.
Structured Programming. Academic Press, 1972.

[DeM78] Tom DeMarco.Structured Analysis and System Specification. Your-
don Press, 1978.

[Dij68] Edsger W. Dijkstra. The structure of the “THE”-multiprogramming
system. Communications of the ACM (CACM), 11(5):341–346,
May 1968.

[DM95] François-Nicola Demers and Jacques Malenfant. Reflection in
Logic, Functional and Object-oriented Programming: a Short Com-
parative Study. InProceedings of the Workshop on Reflection and
Meta-Level Architectures and their Applications in AI, IJCAI’95,
pages 29–38, 1995.

[Dor02] Dov Dori. Why Significant UML Change Is Unlikely.Communi-
cations of the ACM (CACM), 43(11), November 2002.

[Dud02] Keith Duddy. UML2 Must Enable a Family of Languages.Com-
munications of the ACM (CACM), 43(11), November 2002.

[EHS97] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma.SDL – Formal
Object-oriented Language for Communicating Systems. Prentice
Hall, 1997.

[EV98] Jörg Ebersp̈acher and Hans-Jörg Vögel.GSM – Switching, Services
and Protocols. Wiley, 1998.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. Stan-
dard RFC 2616, Internet Engineering Task Force, June 1999.

[Fis98] Jerry Fisher. Model-Based Systems Engineering: A New Paradigm.
INSIGHT – A publication of the International Council of Systems
Engineering (INCOSE), 1(3), 1998.

[FT02] William Frank and Kevin P. Tyson. Be Clear, Clean, Concise.Com-
munications of the ACM (CACM), 43(11), November 2002.

BIBLIOGRAPHY 293

[Gel95] David Gelernter. Generative communication in Linda.ACM
Transactions on Programming Languages and Systems (TOPLAS,
7(1):80–112, January 1995.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[GKMP+00] David Garlan, John Knapman, Birger Møller-Pedersen, Bran Selic,
and Thomas Weigert. Modeling of Architectures with UML. In
Andy Evans, Stuart Kent, and Bran Selic, editors,�UML� 2000 –
The Unified Modeling Language: Advancing the Standard; Third
International Conference, York, UK, October 2-6, 2000, LNCS
1939. Springer, 2000.

[GMW97] David Garlan, Robert T. Monroe, and David Wile. ACME: An Ar-
chitecture Description Interchange Language. InProceedings of
CASCON’97, pages 169–183, Toronto, Ontario, November 1997.
IBM Center for Advanced Studies (CAS).

[Gra95] Paul Graham.ANSI Common Lisp. Prentice Hall, 1995.

[HABP02] Matt Holdrege, Ilya Akramovich, C. Michael Brown, and Bala
Pitchandi. Megaco MIB. Internet Draft draft-ietf-megaco-mib-
04.txt, Internet Engineering Task Force, October 2002. expires
April 2003.

[Hal96] Fred Halsall.Data Communications, Computer Networks and Open
Systems. Electronic Systems Engineering Series. Addison-Wesley,
4th edition, 1996.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Sys-
tems. Science of Computer Programming, pages 231–274, July
1987.

[Her99a] Dominikus Herzberg. Die uml: Einführung und vergleich mit
den konzepten und notationen von booch, rumbaugh and jacob-
son. Master’s thesis, FernUniversität, Gesamthochschule in Hagen,
February 1999.

[Her99b] Dominikus Herzberg. UML-RT as a Candidate for Modeling Em-
bedded Real-Time Systems in the Telecommunication Domain. In
Robert France and Bernhard Rumpe, editors,�UML�’99 – The

294 BIBLIOGRAPHY

Unified Modeling Language: Beyond the Standard; Second Inter-
national Conference, Fort Collins, CO, USA, October 28–30, 1999,
LNCS 1723, pages 330–338. Springer, 1999.

[HM01] Dominikus Herzberg and André Marburger. The Use of Layers and
Planes for Architectural Design of Communication Systems. In
Proceedings of the 4th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC 2001), Magde-
burg, Germany; May 2-4, 2001, pages 235–242. IEEE Computer
Society, May 2001.

[HMJ00] Dominikus Herzberg, André Marburger, and Tony Jokikyyny.
E-CARES Research Project: Understanding Complex Legacy
Telecommunication Systems. 2. Workshop Software-
Reengineering, Bad Honnef, Germany, 11.-12. May, 2000.

[HNS00] Christine Hofmeister, Robert Nord, and Dilip Soni.Applied Soft-
ware Architecture. Addison-Wesley, 2000.

[Hoa85] Charles A. R. Hoare.Communicating Sequential Processes. Pren-
tice Hall, 1985.

[Hol91] Gerard J. Holzmann.Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[HT99] Andrew Hunt and David Thomas.The Pragmatic Programmer.
Addison-Wesley, 1999.

[HvW99] Dominikus Herzberg and Lars von Wedel. Erweiterungsmechanis-
men der UML. OBJEKTspektrum, pages 56–59, Juli/August (4)
1999.

[ITU88] Introduction to the CCITT man-machine language. ITU-T Recom-
mendation Z.301, International Telecommunication Union, Novem-
ber 1988.

[ITU91] B-ISDN Protocol Reference Model and its Application. ITU-T Rec-
ommendation I.321, International Telecommunication Union, April
1991.

[ITU93a] ISDN Protocol Reference Model. ITU-T Recommendation I.320,
International Telecommunication Union, November 1993.

BIBLIOGRAPHY 295

[ITU93b] Introduction to CCITT Signalling System No. 7. ITU-T Recom-
mendation Q.700, International Telecommunication Union, March
1993.

[ITU93c] Functional Description of the Message Transfer Part (MTP) of Sig-
nalling System No. 7. ITU-T Recommendation Q.701, International
Telecommunication Union, March 1993.

[ITU93d] Signalling network structure. ITU-T Recommendation Q.705, In-
ternational Telecommunication Union, March 1993.

[ITU93e] Signalling performance. ITU-T Recommendation Q.706, Interna-
tional Telecommunication Union, March 1993.

[ITU93f] Information Technology – Open Systems Interconnection – Basic
Reference Model: Conventions for the Definition of OSI Services.
ITU-T Recommendation X.210, International Telecommunication
Union, November 1993.

[ITU93g] SDL Methodology Guidelines, SDL Bibliography. ITU-T Recom-
mendation Z.100 Appendicies I and II, International Telecommuni-
cation Union, March 1993.

[ITU94] Information Technology – Open Systems Interconnection – Ba-
sic Reference Model: The Basic Model. ITU-T Recommendation
X.200, International Telecommunication Union, July 1994.

[ITU96a] Signalling Link. ITU-T Recommendation Q.703, International
Telecommunication Union, July 1996.

[ITU96b] Signalling network functions and messages. ITU-T Recommenda-
tion Q.704, International Telecommunication Union, July 1996.

[ITU96c] CCITT high level programming language (CHILL). ITU-T Recom-
mendation Z.200, International Telecommunication Union, October
1996.

[ITU97] Information technology – Open Distributed Processing – Reference
model: Overview. ITU-T Recommendation X.901, International
Telecommunication Union, 1997.

[ITU99a] Specification and Description Language (SDL). ITU-T Recommen-
dation Z.100, International Telecommunication Union, November
1999.

296 BIBLIOGRAPHY

[ITU99b] SDL combined with UML. ITU-T Recommendation Z.109, Inter-
national Telecommunication Union, November 1999.

[ITU99c] Message Sequence Chart (MSC). ITU-T Recommendation Z.120,
International Telecommunication Union, November 1999.

[ITU00] Gateway Control Protocol. ITU-T Recommendation H.248, Inter-
national Telecommunication Union, June 2000.

[JBB92] Van Jacobson, Bob Braden, and Dave Borman. TCP Extensions for
High Performance. Standard RFC 1323, Internet Engineering Task
Force, May 1992.

[JCJÖ92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar
Övergaard. Object-Oriented Software Engineering. Addison-
Wesley, revised printing edition, 1992.

[KCe98] Richard Kelsey, William Clinger, and Jonathan Rees (edi-
tors). Revised5 Report on the Algorithmic Language Scheme.
http://www.schemers.org, February 1998. the report is the de facto
scheme standard but not owned by a standardization body or any
other organization.

[Kes97] Srinivasan Keshav.An Engineering Approach to Computer Net-
working: ATM Networks, the Internet, and the Telephone Network.
Addison-Wesley, 1997.

[Kle00] Peter Klein.Architecture Modeling of Distributed and Concurrent
Software Systems. PhD thesis, Aachen University of Technology
(RWTH Aachen), Germany, 2000.

[Kle01] John C. Klensin. Simple Mail Transfer Protocol. Standard
RFC 2821, Internet Engineering Task Force, April 2001.

[KLM +97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. InProceedings of the European
Conference on Object-Oriented Programming (ECOOP), LNCS
1241. Springer, June 1997.

[KR88] Brian W. Kernighan and Dennis M. Ritchie.The C Programming
Language. Prentice Hall, 2nd edition, 1988.

[Kru95] Philippe Kruchten. The 4+1 View Model of Architecture.IEEE
Software, 12(6):42–50, November 1995.

BIBLIOGRAPHY 297

[Lar99] John Larmouth.ASN.1 Complete. Morgan Kaufmann, 1999.

[Law82] David A. Lawson. A New Software Architecture for Switching Sys-
tems.IEEE Transactions on Communications Communication Soft-
ware, COM-30(6):17–25, June 1982.

[LKA +95] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera,
Doug Bryan, and Walter Mann. Specification and Analysis of Sys-
tem Architecture Using Rapide.IEEE Transactions on Software
Engineering, 21(4):336–355, April 1995.

[Lut96] Mark Lutz. Programming Python. O’Reilly, 1996.

[Lut01] Mark Lutz. Programming Python. O’Reilly, 2nd edition, 2001.

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer.
Specifying Distributed Software Architectures. InProceedings of
the 5th European Software Engineering Conference (ESEC ’95),
number 989 in LNCS, pages 137–153. Springer, 1995.

[Mel02] Stephen J. Mellor. Make Models Be Assets.Communications of
the ACM (CACM), 43(11), November 2002.

[Mey97] Bertrand Meyer.Object-Oriented Software Construction. Prentice
Hall, 2nd edition, 1997.

[MH01] André Marburger and Dominikus Herzberg. E-CARES Research
Project: Understanding Complex Legacy Telecommunication Sys-
tems. In Pedro Sousa and Jürgen Ebert, editors,Proceedings of the
Fifth European Conference on Software Maintenance and Reengi-
neering (CSMR 2001); 14-16 March 2001, Lisbon, Portugal, pages
139–147. IEEE Computer Society Press, 2001.

[MHL01] Thomas Muth, Dominikus Herzberg, and Jens Larsen. A Fresh
View on Model-based Systems Engineering: The Processing Sys-
tem Paradigm. InProceedings of the 11th Annual International
Symposium of The International Council on Systems Engineering
(INCOSE 2001); July 1-5, 2001, Melbourne, Australia, 2001.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall,
1989.

[MJ85] John Meurling and Richard Jeans.A Switch in Time – An Engineer’s
Tale. Telephony Publishing Corp., Chicago, Illionois 60604 USA,
1985.

298 BIBLIOGRAPHY

[MJ00] John Meurling and Richard Jeans.The Ericsson Chronicle: 125
Years in Telecommunications. Informationsf̈orlaget Heimdahls AB,
11386 Stockholm, Sweden, 2000.

[MK99] Jeff Magee and Jeff Kramer.Concurrent Programming: State Mod-
els and Java Programs. Wiley, 1999.

[MM01] Joaquin Miller and Jishnu Mukerji. Model Driven Architecture
(MDA). Technical Description ormsc/2001-07-01, Object Manage-
ment Group (OMG), 2001.

[Moc87a] P. Mockapetris. Domain Names – Concepts and Facilities. Standard
RFC 1034, Internet Engineering Task Force, November 1987.

[Moc87b] P. Mockapetris. Domain Names – Implementation and Specifica-
tion. Standard RFC 1035, Internet Engineering Task Force, Novem-
ber 1987.

[MR97] Thomas J. Mowbray and William A. Ruh.Inside CORBA: Dis-
tributed Object Standards and Applications. Addison-Wesley,
1997.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and
comparison framework for software architecture description lan-
guages.IEEE Transactions on Software Engineering, 26(1):70–93,
January 2000.

[Mut01] Thomas Muth.Modeling Telecom Networks and Systems Architec-
ture: Conceptual Tools and Formal Methods. Springer, 2001.

[Nag90] Manfred Nagl. Softwaretechnik: Methodisches Programmieren im
Großen. Springer, 1990.

[Nag96] Manfred Nagl, editor.Building Tightly Integrated Software Devel-
opment Environments: The IPSEN Approach. Number 1170 in Lec-
ture Notes in Computer Science. Springer, 1996.

[Obj98] ObjecTime Limited, Canada, Ontario.ObjecTime Developer: User
Guide, Product Release 5.2, August 1998.

[OMG01] Unified Modeling Language Specification, Version 1.4. Technical
Specification, Object Management Group (OMG), February 2001.

[OMG02] Meta Object Facility (MOF) Specification, Version 1.4. Technical
Specification, Object Management Group (OMG), April 2002.

BIBLIOGRAPHY 299

[Ora01] Andy Oram, editor.Peer to Peer. O’Reilly, 2001.

[ORG+99] Lyndon Ong, Ian Rytina, Miguel-Angel Garcia, Hanns Juergen
Schwarzbauer, Lode Coene, Haui an Paul Lin, Imre Juhasz, Matt
Holdrege, and Chip Sharp. Framework Architecture for Signaling
Transport. Standard RFC 2719, Internet Engineering Task Force,
October 1999.

[PC93] David M. Piscitello and A. Lyman Chapin.Open Systems Network-
ing: TCP/IP and OSI. Addison-Wesley, 1993.

[PD00] Larry L. Peterson and Bruce S. Davie.Computer Networks – A
Systems Approach. Morgan Kaufman Publishers, 2nd edition, 2000.

[PKB+02] A. Pink, H. Koßmann, M. Broy, E. Kargl, M. Lagally, and T. Schim-
per. Software-Entwicklung für Kommunikationsnetze. Springer,
2002.

[Pop94] Karl Popper.Logik der Forschung. J.C.B. Mohr, 10th edition, 1994.

[Pos80] Jon Postel. User Datagram Protocol. Standard RFC 768, Internet
Engineering Task Force, August 1980.

[Pos81a] Jon Postel. Internet Protocol. Standard RFC 791, Internet Engineer-
ing Task Force, September 1981.

[Pos81b] Jon Postel. Transmission Control Protocol. Standard RFC 793,
Internet Engineering Task Force, September 1981.

[PR85] Jon Postel and J. K. Reynolds. File Transfer Protocol. Standard
RFC 959, Internet Engineering Task Force, October 1985.

[Put01] Janis R. Putman.Architecting with RM-ODP. Prentice Hall, 2001.

[PW82] Brian K. Penny and J. W. J. Williams. The Software Architecture for
a Large Telephone Switch.IEEE Transactions on Communications
Communication Software, COM-30(6):105–114, June 1982.

[Rad01] Ansgar Radermacher.Tool Support for the distribution of Object-
Based Applications. PhD thesis, Aachen University of Technology
(RWTH Aachen), Germany, 2001.

[Rat00] Rational Software Corporation.Modeling Language Guide, Ratio-
nal Rose RealTime, Version 6.1, January 2000.

300 BIBLIOGRAPHY

[Ray99] Eric S. Raymond.The Cathedral & the Bazaar – Musings on Linux
and Open Source by an Accidental Revolutionary. O’Reilly, 1999.

[RBL+91] James Rumbaugh, Michael Blaha, William Lorensen, Frederick
Eddy, and William Premerlani.Object-Oriented Modeling and De-
sign. Prentice Hall, 1991.

[RSRS99] Bernhard Rumpe, Maurice Schoenmakers, Ansgar Radermacher,
and Andy Scḧurr. UML + ROOM as a Standard ADL. InPro-
ceedings ICECCS’99, 5th International IEEE Conference on Engi-
neering Complex Computer Systems, pages 43–53, Los Alamitos,
1999. IEEE Computer Society Press.

[Rum96] James Rumbaugh.OMT Insights. Prentice Hall, 1996.

[Rus00] Travis Russell.Telecommunications Protocols. McGraw-Hill, 2nd
edition, 2000.

[S+96] John A. Stankovic et al. Strategic directions in real-time and embed-
ded systems.ACM Computing Surveys, 28(4):751–763, December
1996.

[SCFJ96] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van
Jacobson. RTP: A Transport Protocol for Real-Time Applica-
tions. Standard RFC 1889, Internet Engineering Task Force, Jan-
uary 1996.

[SDK+95] Mary Shaw, Robert DeLine, Daniel Klein, Theodore Ross, David
Young, and Gregory Zelesnik. Abstractions for Software Architec-
ture and Tools to Support Them.IEEE Transactions on Software
Engineering, 21(4):314–335, April 1995.

[Sel99] Bran Selic. Turning Clockwise: Using UML in the Real-Time Do-
main. Communications of the ACM (CACM), 42(10):46–54, 1999.

[SG96] Mary Shaw and David Garlan.Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

[SGW94] Bran Selic, Garth Gullekson, and Paul T. Ward.Real-Time Object-
Oriented Modeling. John Wiley & Sons, Inc., 1994.

[Sie97] Gerd Siegmund. ATM – Die Technik: Grundlagen, Netze,
Schnittstellen, Protokolle. Hüthig, Heidelberg, 3rd edition, 1997.

BIBLIOGRAPHY 301

[Sim99] David E. Simon.An Embedded Software Primer. Addison-Wesley,
1999.

[SK98] Martin Schader and Axel Korthaus, editors.The Unified Model-
ing Language: Technical Aspects and Applications. Physica-Verlag,
Heidelberg, New York, 1998.

[SM92] Sally Shlaer and Stephen Mellor.Object Lifecycles: Modeling the
World in States. Yourdon Press, 1992.

[SMPB02] Greg Sidebottom, Ken Morneault, and Javier Pastor-Balbas. Signal-
ing System 7 (SS7) Message Transfer Part 3 (MTP3) – User Adap-
tation Layer (M3UA). Standard RFC 3332, Internet Engineering
Task Force, September 2002.

[Son98] Eduardo D. Sontag.Mathematical Control Theory: Deterministic
Finite Dimensional Systems. Springer, 2nd edition, 1998.

[Spu00] Charles E. Spurgeon.Ethernet: The Definitive Guide. O’Reilly,
2000.

[SR98a] Bran Selic and Jim Rumbaugh. Die Verwendung der UML für
die Modellierung komplexer Echtzeitsysteme.OBJEKTspektrum,
pages 24–36, Juli/August 1998.

[SR98b] Bran Selic and Jim Rumbaugh. Using UML for Modeling Complex
Real-Time Systems. Whitepaper, Rational Software Corporation,
March 1998.

[SRK02] Bran Selic, Guus Ramackers, and Cris Kobryn. Evolution, Not Rev-
olution. Communications of the ACM (CACM), 43(11), November
2002.

[SS95a] Richard Mark Soley and Christopher M. Stone. Object Manage-
ment Architecture Guide – Revision 3.0. Document ab/97-05-05,
Object Management Group (OMG), June 1995.

[SS95b] Richard Mark Soley and Christopher M. Stone.Object Management
Architecture Guide, 3rd Edition. Wiley, 1995.

[SSRB00] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann.Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, volume 2. Wiley, 2000.

302 BIBLIOGRAPHY

[Sta88] John Stankovic. Misconceptions about real-time computing: A
serious problem for next generation systems.IEEE Computer,
21(10):10–19, October 1988.

[Sta96] John A. Stankovic. Real-time and embedded systems.ACM Com-
puting Surveys, 28(1):205–208, March 1996.

[Ste98] W. Richard Stevens.UNIX Network Programming, Volume 1: Net-
working APIs - Sockets and XTI. Prentice Hall PTR, 2nd edition,
1998.

[Str00] Bjarne Stroustrup.The C++ Programming Language. Addison-
Wesley, 3rd edition, 2000.

[Stu97] Understanding Telecommunications 1. Studentlitteratur, Lund,
Sweden, 1997.

[Stu98] Understanding Telecommunications 2. Studentlitteratur, Lund,
Sweden, 1998.

[SUN02] JavaSpaces Service Specification v1.2.1. Jini Specifications v1.2,
Sun Microsystems, April 2002.

[SX01] Randall R. Stewart and Qiaobing Xie.Stream Control Transmission
Protocol (SCTP): A Reference Guide. Addison-Wesley, 2001.

[SXM+00] Randall R. Stewart, Qiaobing Xie, Ken Morneault, Chip Sharp,
Hanns Juergen Schwarzbauer, Tom Taylor, Ian Rytina, Malleswar
Kalla, Lixia Zhang, and Vern Paxson. Stream Control Transmission
Protocol. Standard RFC 2960, Internet Engineering Task Force, Oc-
tober 2000.

[Szy02] Clemens Szyperski.Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 2nd edition, 2002.

[Tan96] Andrew S. Tanenbaum.Computer Networks. Prentice Hall PTR,
Upper Saddle River, New Jersey 07458, 3rd edition, 1996.

[Tan03] Andrew S. Tanenbaum.Computer Networks. Prentice Hall PTR,
Upper Saddle River, New Jersey 07458, 4th edition, 2003.

[Tay98] Lloyd Taylor. Client/Server Frequently Asked Questions (Revi-
sion 1.12). http://www.faqs.org/faqs/client-server-faq/; FAQ of the
comp.client-server newsgroup, August 1998.

BIBLIOGRAPHY 303

[Tuc97] Allen B. Tucker. The Computer Science and Engineering Hand-
book, chapter 78: Real-Time and Embedded Systems, pages 1709–
1724. CRC Press, 1997.

[TvS02] Andrew S. Tanenbaum and Maarten van Steen.Distributed Sys-
tems: Principles and Paradigms. Prentice Hall, Upper Saddle River,
New Jersey 07458, 2002.

[Vig64] F. S. Viglinate. Fundamentals of stored program control of tele-
phone switching systems. InProceedings of the 1964 19th ACM
national conference, pages 142.201–142.206, 1964.

[Wal01] Bernhard Walke.Mobile Radio Networks: Networking, Protocols
and Traffic Performance. Wiley, 2nd edition, 2001.

[WAS01] Bernhard Walke, Marc Peter Althoff, and Peter Seidenberg.UMTS
– Ein Kurs. J. Schlembach Fachverlag, 2001.

[Wu98] Jie Wu.Distributed System Design. CRC Press, 1998.

304 BIBLIOGRAPHY

Curriculum Vitae

■ Present Post

University of Applied Sciences, FH Heilbronn

since Apr. ’03 Stand-in Professorshipin Software Engineering

■ Previous Employment

Aachen University of Technology (RWTH Aachen)
Dep. of Computer Science III, Prof. Dr. M. Nagl

Dec. ’02 – Mar. ’03 Research Assistant, Architecture Modeling of
Telecommunication Systems

Ericsson Eurolab Deutschland GmbH, Herzogenrath
R&D for Mobile Circuit Switching Systems

Apr. ’00 – Nov. ’02 Senior Systems Designer
System and Product Management Department

Aug. ’97 – Mar. ’00 Process Engineer
System and Product Management Department

Jun. ’95 – Jul. ’97 Test Engineer GSM
Test Department

■ Education

Nov. ’98 – Sep. ’03 External Dissertation, RWTH Aachen

Oct. ’96 – Mar. ’99 Wirtschaftsingenieurwesen, FernUniversiẗat Hagen

Oct. ’88 – May ’95 Electrical Engineering, RWTH Aachen

1986 – 1988 Civilian Service
1977 – 1986 Secondary school, Gymnasium Hückelhoven
1973 – 1977 Primary school, Hückelhoven

■ Personal Details

May 13, 1967 born in Bonn, Germany
nationality: German
married, one child

Aachen, September 2003

